Spaces:
Sleeping
Sleeping
File size: 10,897 Bytes
901dbf6 7c48137 901dbf6 6a10585 901dbf6 bc66c2d a3d93e8 901dbf6 d7c9d31 901dbf6 a3d93e8 901dbf6 0de3957 901dbf6 60c1b07 901dbf6 a35180c 8bb3f75 a3d93e8 8bb3f75 0de3957 544c870 0de3957 544c870 60c1b07 8bb3f75 a35180c 8bb3f75 901dbf6 8bb3f75 901dbf6 8bb3f75 901dbf6 8bb3f75 901dbf6 60c1b07 8bb3f75 901dbf6 8bb3f75 901dbf6 8bb3f75 73bc32e 901dbf6 60c1b07 901dbf6 6a10585 8bb3f75 901dbf6 545abd8 901dbf6 8bb3f75 901dbf6 8bb3f75 6a10585 901dbf6 40ea739 60c1b07 90e8168 60c1b07 90e8168 60c1b07 90e8168 60c1b07 90e8168 60c1b07 90e8168 60c1b07 90e8168 60c1b07 90e8168 60c1b07 901dbf6 ab1449b 7c48137 ab1449b 7c48137 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import streamlit as st
from paddleocr import PaddleOCR
from PIL import ImageDraw, ImageFont,ImageEnhance
import torch
from transformers import AutoProcessor,LayoutLMv3ForTokenClassification
import numpy as np
import time
model_Hugging_path = "Noureddinesa/Output_LayoutLMv3_v7"
def Paddle():
ocr = PaddleOCR(use_angle_cls=False,lang='fr',rec=False)
return ocr
#############################################################################
#############################################################################
def Labels():
labels = ['InvNum', 'InvDate', 'Fourni', 'TTC', 'TVA', 'TT', 'Autre']
id2label = {v: k for v, k in enumerate(labels)}
label2id = {k: v for v, k in enumerate(labels)}
return id2label, label2id
def processbbox(BBOX, width, height):
bbox = []
bbox.append(BBOX[0][0])
bbox.append(BBOX[0][1])
bbox.append(BBOX[2][0])
bbox.append(BBOX[2][1])
#Scaling
bbox[0]= 1000*bbox[0]/width # X1
bbox[1]= 1000*bbox[1]/height # Y1
bbox[2]= 1000*bbox[2]/width # X2
bbox[3]= 1000*bbox[3]/height # Y2
for i in range(4):
bbox[i] = int(bbox[i])
return bbox
def Preprocess(image):
ocr = Paddle()
image_array = np.array(image)
width, height = image.size
results = ocr.ocr(image_array, cls=False,rec = True)
results = results[0]
test_dict = {'image': image ,'tokens':[], "bboxes":[]}
for item in results :
bbox = processbbox(item[0], width, height)
test_dict['tokens'].append(item[1][0])
test_dict['bboxes'].append(bbox)
print(test_dict['bboxes'])
print(test_dict['tokens'])
return test_dict
#############################################################################
#############################################################################
def Encode(image):
example = Preprocess(image)
image = example["image"]
words = example["tokens"]
boxes = example["bboxes"]
processor = AutoProcessor.from_pretrained(model_Hugging_path, apply_ocr=False)
encoding = processor(image, words, boxes=boxes,return_offsets_mapping=True,truncation=True, max_length=512, padding="max_length", return_tensors="pt")
offset_mapping = encoding.pop('offset_mapping')
return encoding, offset_mapping,words
#############################################################################
#############################################################################
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def drop_null_bbox(dictionary):
keys_to_drop = []
for key, (_, _, bbox_values) in dictionary.items():
if all(value == 0.0 for value in bbox_values):
keys_to_drop.append(key)
for key in keys_to_drop:
del dictionary[key]
def get_word(bboxes,image):
ocr = Paddle()
x_min, y_min, x_max, y_max = bboxes
roi = image.crop((x_min, y_min, x_max, y_max)) # Region of intrest
roi_np = np.array(roi) # To array
result = ocr.ocr(roi_np, cls=False,det = False,rec = True)
if result != [None]:
return result[0][0][0]
else :
return ""
#############################################################################
#############################################################################
def get_Finale_results(offset_mapping,id2label,image,prediction_scores,predictions,token_boxes):
width, height = image.size
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
# Filter out subword tokens and extract true predictions and scores
true_predictions_with_scores = [(idx,id2label[pred], score[pred],unnormalize_box(box, width, height)) for idx, (pred, score,box) in enumerate(zip(predictions, prediction_scores,token_boxes)) if not is_subword[idx]]
Final_prediction = [pred for pred in true_predictions_with_scores if pred[1] != "Autre"]
# Create a dictionary to store the highest score for each prediction
Final_results = {}
# Eliminete Duplication of Predictions
for index, prediction, score, bbox in Final_prediction:
if prediction not in Final_results or score > Final_results[prediction][1]:
Final_results[prediction] = (index, score,bbox)
drop_null_bbox(Final_results)
for final in Final_results:
Kalma = get_word(Final_results[final][2],image)
New_tuple = (Kalma,Final_results[final][1],Final_results[final][2])
Final_results[final] = New_tuple
return Final_results
def Run_model(image):
encoding,offset_mapping,_ = Encode(image)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# load the fine-tuned model from the hub
model = LayoutLMv3ForTokenClassification.from_pretrained(model_Hugging_path)
model.to(device)
# forward pass
outputs = model(**encoding)
prediction_scores = outputs.logits.softmax(-1).squeeze().tolist()
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
id2label, _ = Labels()
Finale_results=get_Finale_results(offset_mapping,id2label,image,prediction_scores,predictions,token_boxes)
return Finale_results
#############################################################################
#############################################################################
def Get_Json(Finale_results):
Results = {}
for prd in Finale_results:
if prd in ['InvNum','Fourni', 'InvDate','TT','TTC','TVA']:
Results[prd] = Finale_results[prd][0]
key_mapping = {'InvNum':'Numéro de facture','Fourni':'Fournisseur', 'InvDate':'Date Facture','TT':'Total HT','TTC':'Total TTC','TVA':'TVA'}
Results = {key_mapping.get(key, key): value for key, value in Results.items()}
return Results
#############################################################################
#############################################################################
def Draw(image):
start_time = time.time()
image = enhance_image(image,1.3,1.7)
Finale_results = Run_model(image)
draw = ImageDraw.Draw(image)
label2color = {
'InvNum': 'blue',
'InvDate': 'green',
'Fourni': 'orange',
'TTC':'purple',
'TVA': 'magenta',
'TT': 'red',
'Autre': 'black'
}
# Adjust the thickness of the rectangle outline and label text position
rectangle_thickness = 4
label_x_offset = 20
label_y_offset = -30
# Custom font size
custom_font_size = 25
# Load a font with the custom size
font_path = "arial.ttf" # Specify the path to your font file
custom_font = ImageFont.truetype(font_path, custom_font_size)
for result in Finale_results:
predicted_label = result
box = Finale_results[result][2]
color = label2color[result]
draw.rectangle(box, outline=color, width=rectangle_thickness)
#print(box)
# Draw text using the custom font and size
draw.rectangle((box[0], box[1]+ label_y_offset,box[2],box[3]+ label_y_offset), fill=color)
draw.text((box[0] + label_x_offset, box[1] + label_y_offset), text=predicted_label, fill='white', font=custom_font)
Results = Get_Json(Finale_results)
end_time = time.time()
execution_time = end_time - start_time
return image,Results,execution_time
#############################################################################
#############################################################################
def Update(Results):
New_results = {}
if "Fournisseur" in Results.keys():
text_fourni = st.sidebar.text_input("Fournisseur", value=Results["Fournisseur"])
New_results["Fournisseur"] = text_fourni
else :
text_fourni = st.sidebar.text_input("Fournisseur", value= "")
New_results["Fournisseur"] = text_fourni
if "Date Facture" in Results.keys():
text_InvDate = st.sidebar.text_input("Date Facture", value=Results["Date Facture"])
New_results["Date Facture"] = text_InvDate
else :
text_InvDate = st.sidebar.text_input("Date Facture", value= "")
New_results["Date Facture"] = text_InvDate
if "Numéro de facture" in Results.keys():
text_InvNum = st.sidebar.text_input("Numéro de facture", value=Results["Numéro de facture"])
New_results["Numéro de facture"] = text_InvNum
else :
text_InvNum = st.sidebar.text_input("Numéro de facture", value= "")
New_results["Numéro de facture"] = text_InvNum
if "Total HT" in Results.keys():
text_TT = st.sidebar.text_input("Total HT", value=Results["Total HT"])
New_results["Total HT"] = text_TT
else :
text_TT = st.sidebar.text_input("Total HT", value= "")
New_results["Total HT"] = text_TT
if "TVA" in Results.keys():
text_TVA = st.sidebar.text_input("TVA", value=Results["TVA"])
New_results["TVA"] = text_TVA
else :
text_TVA = st.sidebar.text_input("TVA", value= "")
New_results["TVA"] = text_TVA
if "Total TTC" in Results.keys():
text_TTC = st.sidebar.text_input("Total TTC", value=Results["Total TTC"])
New_results["Total TTC"] = text_TTC
else :
text_TTC = st.sidebar.text_input("Total TTC", value= "")
New_results["Total TTC"] = text_TTC
return New_results
#############################################################################
#############################################################################
def Change_Image(image1,image2):
# Initialize session state
if 'current_image' not in st.session_state:
st.session_state.current_image = 'image1'
# Button to switch between images
if st.sidebar.button('Switcher'):
if st.session_state.current_image == 'image1':
st.session_state.current_image = 'image2'
else:
st.session_state.current_image = 'image1'
# Display the selected image
if st.session_state.current_image == 'image1':
st.image(image1, caption='Output', use_column_width=True)
else:
st.image(image2, caption='Image initiale', use_column_width=True)
#############################################################################
#############################################################################
def enhance_image(image,brightness_factor, contrast_factor):
enhancer = ImageEnhance.Brightness(image)
brightened_image = enhancer.enhance(brightness_factor)
enhancer = ImageEnhance.Contrast(brightened_image)
enhanced_image = enhancer.enhance(contrast_factor)
return enhanced_image
|