diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -1,6 +1,6 @@ """ -Comprehensive NovaEval Space by Noveum.ai -Advanced AI Model Evaluation Platform with Real NovaEval Integration +Advanced NovaEval Space by Noveum.ai +Comprehensive AI Model Evaluation Platform with Hugging Face Models """ import asyncio @@ -18,22 +18,20 @@ from fastapi.responses import HTMLResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import httpx +import traceback -# Configure logging +# Configure logging to stdout only (no file logging to avoid permission issues) logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', - handlers=[ - logging.StreamHandler(sys.stdout), - logging.FileHandler('novaeval.log') - ] + handlers=[logging.StreamHandler(sys.stdout)] ) logger = logging.getLogger(__name__) app = FastAPI( title="NovaEval by Noveum.ai", - description="Advanced AI Model Evaluation Platform", - version="1.0.0" + description="Advanced AI Model Evaluation Platform with Hugging Face Models", + version="2.0.0" ) app.add_middleware( @@ -48,14 +46,11 @@ app.add_middleware( class EvaluationRequest(BaseModel): models: List[str] dataset: str - dataset_subset: Optional[str] = None metrics: List[str] - num_samples: int = 10 + sample_size: int = 50 temperature: float = 0.7 - max_tokens: int = 150 - top_p: float = 1.0 - frequency_penalty: float = 0.0 - presence_penalty: float = 0.0 + max_tokens: int = 512 + top_p: float = 0.9 class EvaluationResponse(BaseModel): evaluation_id: str @@ -63,810 +58,593 @@ class EvaluationResponse(BaseModel): message: str # Global state -active_evaluations: Dict[str, Dict] = {} -websocket_connections: List[WebSocket] = [] +active_evaluations = {} +websocket_connections = {} -# NovaEval Compatible Models (LLMs only) -SUPPORTED_MODELS = { - "openai": { - "gpt-4o": { - "name": "GPT-4o", - "provider": "OpenAI", - "description": "Latest and most capable GPT-4 model", - "context_length": 128000, - "cost_per_1k_tokens": 0.005, - "capabilities": ["text", "reasoning", "analysis"] +# Hugging Face Models Configuration +HF_MODELS = { + "small": [ + { + "id": "google/flan-t5-large", + "name": "FLAN-T5 Large", + "size": "0.8B", + "description": "Best pretrained model around 1B parameters", + "capabilities": ["text-generation", "reasoning", "qa"], + "cost_per_1k": 0.0, + "provider": "Google" + }, + { + "id": "Qwen/Qwen2.5-3B", + "name": "Qwen 2.5 3B", + "size": "3B", + "description": "Best pretrained model around 3B parameters", + "capabilities": ["text-generation", "reasoning", "multilingual"], + "cost_per_1k": 0.0, + "provider": "Alibaba" }, - "gpt-4o-mini": { - "name": "GPT-4o Mini", - "provider": "OpenAI", - "description": "Cost-effective GPT-4 model", - "context_length": 128000, - "cost_per_1k_tokens": 0.00015, - "capabilities": ["text", "reasoning", "analysis"] + { + "id": "google/gemma-2b", + "name": "Gemma 2B", + "size": "2B", + "description": "Efficient small model for general tasks", + "capabilities": ["text-generation", "reasoning"], + "cost_per_1k": 0.0, + "provider": "Google" + } + ], + "medium": [ + { + "id": "Qwen/Qwen2.5-7B", + "name": "Qwen 2.5 7B", + "size": "7B", + "description": "Best pretrained model around 7B parameters", + "capabilities": ["text-generation", "reasoning", "analysis"], + "cost_per_1k": 0.0, + "provider": "Alibaba" }, - "gpt-4-turbo": { - "name": "GPT-4 Turbo", - "provider": "OpenAI", - "description": "High-performance GPT-4 variant", - "context_length": 128000, - "cost_per_1k_tokens": 0.01, - "capabilities": ["text", "reasoning", "analysis"] + { + "id": "mistralai/Mistral-7B-v0.1", + "name": "Mistral 7B", + "size": "7B", + "description": "Strong general purpose model", + "capabilities": ["text-generation", "reasoning", "analysis"], + "cost_per_1k": 0.0, + "provider": "Mistral AI" }, - "gpt-4": { - "name": "GPT-4", - "provider": "OpenAI", - "description": "Original GPT-4 model", - "context_length": 8192, - "cost_per_1k_tokens": 0.03, - "capabilities": ["text", "reasoning", "analysis"] + { + "id": "microsoft/DialoGPT-medium", + "name": "DialoGPT Medium", + "size": "345M", + "description": "Conversational AI specialist", + "capabilities": ["conversation", "dialogue"], + "cost_per_1k": 0.0, + "provider": "Microsoft" }, - "gpt-3.5-turbo": { - "name": "GPT-3.5 Turbo", - "provider": "OpenAI", - "description": "Fast and efficient model", - "context_length": 16385, - "cost_per_1k_tokens": 0.0015, - "capabilities": ["text", "conversation"] + { + "id": "codellama/CodeLlama-7b-Python-hf", + "name": "CodeLlama 7B Python", + "size": "7B", + "description": "Code generation specialist", + "capabilities": ["code-generation", "python"], + "cost_per_1k": 0.0, + "provider": "Meta" } - }, - "anthropic": { - "claude-3-5-sonnet": { - "name": "Claude 3.5 Sonnet", - "provider": "Anthropic", - "description": "Latest Claude model with enhanced capabilities", - "context_length": 200000, - "cost_per_1k_tokens": 0.003, - "capabilities": ["text", "reasoning", "analysis", "coding"] + ], + "large": [ + { + "id": "Qwen/Qwen2.5-14B", + "name": "Qwen 2.5 14B", + "size": "14B", + "description": "Best pretrained model around 14B parameters", + "capabilities": ["text-generation", "reasoning", "analysis", "complex-tasks"], + "cost_per_1k": 0.0, + "provider": "Alibaba" }, - "claude-3-opus": { - "name": "Claude 3 Opus", - "provider": "Anthropic", - "description": "Most capable Claude 3 model", - "context_length": 200000, - "cost_per_1k_tokens": 0.015, - "capabilities": ["text", "reasoning", "analysis", "coding"] + { + "id": "Qwen/Qwen2.5-32B", + "name": "Qwen 2.5 32B", + "size": "32B", + "description": "Best pretrained model around 32B parameters", + "capabilities": ["text-generation", "reasoning", "analysis", "complex-tasks"], + "cost_per_1k": 0.0, + "provider": "Alibaba" }, - "claude-3-sonnet": { - "name": "Claude 3 Sonnet", - "provider": "Anthropic", - "description": "Balanced Claude 3 model", - "context_length": 200000, - "cost_per_1k_tokens": 0.003, - "capabilities": ["text", "reasoning", "analysis"] + { + "id": "Qwen/Qwen2.5-72B", + "name": "Qwen 2.5 72B", + "size": "72B", + "description": "Best pretrained model around 72B parameters", + "capabilities": ["text-generation", "reasoning", "analysis", "complex-tasks"], + "cost_per_1k": 0.0, + "provider": "Alibaba" + } + ] +} + +# Evaluation Datasets Configuration +EVALUATION_DATASETS = { + "reasoning": [ + { + "id": "Rowan/hellaswag", + "name": "HellaSwag", + "description": "Commonsense reasoning benchmark", + "samples": 60000, + "task_type": "multiple_choice", + "difficulty": "medium" + }, + { + "id": "tau/commonsense_qa", + "name": "CommonsenseQA", + "description": "Commonsense reasoning questions", + "samples": 12100, + "task_type": "multiple_choice", + "difficulty": "medium" }, - "claude-3-haiku": { - "name": "Claude 3 Haiku", - "provider": "Anthropic", - "description": "Fast and efficient Claude 3 model", - "context_length": 200000, - "cost_per_1k_tokens": 0.00025, - "capabilities": ["text", "conversation"] + { + "id": "allenai/ai2_arc", + "name": "ARC (AI2 Reasoning Challenge)", + "description": "Science questions requiring reasoning", + "samples": 7790, + "task_type": "multiple_choice", + "difficulty": "hard" } - }, - "aws_bedrock": { - "amazon-titan-text": { - "name": "Amazon Titan Text", - "provider": "AWS Bedrock", - "description": "Amazon's foundation model for text", - "context_length": 8000, - "cost_per_1k_tokens": 0.0008, - "capabilities": ["text", "generation"] + ], + "knowledge": [ + { + "id": "cais/mmlu", + "name": "MMLU", + "description": "Massive Multitask Language Understanding", + "samples": 231000, + "task_type": "multiple_choice", + "difficulty": "hard" }, - "cohere-command": { - "name": "Cohere Command", - "provider": "AWS Bedrock", - "description": "Cohere's command model via Bedrock", - "context_length": 4096, - "cost_per_1k_tokens": 0.0015, - "capabilities": ["text", "conversation"] + { + "id": "google/boolq", + "name": "BoolQ", + "description": "Boolean questions requiring reading comprehension", + "samples": 12700, + "task_type": "yes_no", + "difficulty": "medium" } - }, - "noveum": { - "noveum-gateway": { - "name": "Noveum AI Gateway", - "provider": "Noveum.ai", - "description": "Access to Noveum's curated model collection", - "context_length": "Variable", - "cost_per_1k_tokens": "Variable", - "capabilities": ["text", "reasoning", "analysis", "custom"] + ], + "math": [ + { + "id": "openai/gsm8k", + "name": "GSM8K", + "description": "Grade school math word problems", + "samples": 17600, + "task_type": "generation", + "difficulty": "medium" + }, + { + "id": "deepmind/aqua_rat", + "name": "AQUA-RAT", + "description": "Algebraic reasoning problems", + "samples": 196000, + "task_type": "multiple_choice", + "difficulty": "hard" } - } -} - -# NovaEval Compatible Datasets -SUPPORTED_DATASETS = { - "mmlu": { - "name": "MMLU", - "full_name": "Massive Multitask Language Understanding", - "description": "57-subject benchmark covering elementary mathematics to advanced professional topics", - "type": "multiple_choice", - "subsets": [ - "abstract_algebra", "anatomy", "astronomy", "business_ethics", "clinical_knowledge", - "college_biology", "college_chemistry", "college_computer_science", "college_mathematics", - "college_medicine", "college_physics", "computer_security", "conceptual_physics", - "econometrics", "electrical_engineering", "elementary_mathematics", "formal_logic", - "global_facts", "high_school_biology", "high_school_chemistry", "high_school_computer_science", - "high_school_european_history", "high_school_geography", "high_school_government_and_politics", - "high_school_macroeconomics", "high_school_mathematics", "high_school_microeconomics", - "high_school_physics", "high_school_psychology", "high_school_statistics", "high_school_us_history", - "high_school_world_history", "human_aging", "human_sexuality", "international_law", - "jurisprudence", "logical_fallacies", "machine_learning", "management", "marketing", - "medical_genetics", "miscellaneous", "moral_disputes", "moral_scenarios", "nutrition", - "philosophy", "prehistory", "professional_accounting", "professional_law", "professional_medicine", - "professional_psychology", "public_relations", "security_studies", "sociology", "us_foreign_policy", - "virology", "world_religions" - ], - "sample_count": 14042 - }, - "humaneval": { - "name": "HumanEval", - "full_name": "Human Eval Code Generation", - "description": "Programming problems for evaluating code generation capabilities", - "type": "code_generation", - "subsets": ["python", "javascript", "java", "cpp"], - "sample_count": 164 - }, - "mbpp": { - "name": "MBPP", - "full_name": "Mostly Basic Python Problems", - "description": "Python programming problems for code generation evaluation", - "type": "code_generation", - "subsets": ["basic", "intermediate", "advanced"], - "sample_count": 974 - }, - "hellaswag": { - "name": "HellaSwag", - "full_name": "HellaSwag Commonsense Reasoning", - "description": "Commonsense reasoning about everyday situations", - "type": "multiple_choice", - "subsets": ["validation", "test"], - "sample_count": 10042 - }, - "arc": { - "name": "ARC", - "full_name": "AI2 Reasoning Challenge", - "description": "Science questions requiring reasoning", - "type": "multiple_choice", - "subsets": ["easy", "challenge"], - "sample_count": 7787 - }, - "truthfulqa": { - "name": "TruthfulQA", - "full_name": "TruthfulQA", - "description": "Questions designed to test truthfulness and avoid falsehoods", - "type": "multiple_choice", - "subsets": ["mc1", "mc2", "generation"], - "sample_count": 817 - }, - "custom": { - "name": "Custom Dataset", - "full_name": "Upload Custom Dataset", - "description": "Upload your own JSON or CSV dataset for evaluation", - "type": "custom", - "subsets": ["json", "csv"], - "sample_count": "Variable" - } + ], + "code": [ + { + "id": "openai/openai_humaneval", + "name": "HumanEval", + "description": "Python code generation benchmark", + "samples": 164, + "task_type": "code_generation", + "difficulty": "hard" + }, + { + "id": "google-research-datasets/mbpp", + "name": "MBPP", + "description": "Mostly Basic Python Problems", + "samples": 1400, + "task_type": "code_generation", + "difficulty": "medium" + } + ], + "language": [ + { + "id": "stanfordnlp/imdb", + "name": "IMDB Reviews", + "description": "Movie review sentiment analysis", + "samples": 100000, + "task_type": "classification", + "difficulty": "easy" + }, + { + "id": "abisee/cnn_dailymail", + "name": "CNN/DailyMail", + "description": "News article summarization", + "samples": 936000, + "task_type": "summarization", + "difficulty": "medium" + } + ] } -# NovaEval Compatible Metrics/Scorers -SUPPORTED_METRICS = { - "accuracy": { +# Evaluation Metrics +EVALUATION_METRICS = [ + { + "id": "accuracy", "name": "Accuracy", - "category": "Accuracy-Based", - "description": "Classification accuracy for multiple choice questions", - "best_for": ["multiple_choice", "classification"] + "description": "Percentage of correct predictions", + "applicable_tasks": ["multiple_choice", "yes_no", "classification"] }, - "exact_match": { - "name": "Exact Match", - "category": "Accuracy-Based", - "description": "Exact string matching between prediction and reference", - "best_for": ["short_answer", "factual"] - }, - "f1_score": { + { + "id": "f1_score", "name": "F1 Score", - "category": "Accuracy-Based", - "description": "F1 score for classification tasks", - "best_for": ["classification", "binary_tasks"] - }, - "semantic_similarity": { - "name": "Semantic Similarity", - "category": "Semantic-Based", - "description": "Embedding-based similarity scoring", - "best_for": ["text_generation", "paraphrasing"] + "description": "Harmonic mean of precision and recall", + "applicable_tasks": ["classification", "multiple_choice"] }, - "bert_score": { - "name": "BERT Score", - "category": "Semantic-Based", - "description": "BERT-based semantic evaluation", - "best_for": ["text_generation", "summarization"] + { + "id": "bleu", + "name": "BLEU Score", + "description": "Bilingual Evaluation Understudy for text generation", + "applicable_tasks": ["generation", "summarization", "code_generation"] }, - "rouge_score": { + { + "id": "rouge", "name": "ROUGE Score", - "category": "Semantic-Based", - "description": "ROUGE metrics for text generation", - "best_for": ["summarization", "text_generation"] - }, - "code_execution": { - "name": "Code Execution", - "category": "Code-Specific", - "description": "Execute and validate code outputs", - "best_for": ["code_generation", "programming"] + "description": "Recall-Oriented Understudy for Gisting Evaluation", + "applicable_tasks": ["summarization", "generation"] }, - "syntax_checker": { - "name": "Syntax Checker", - "category": "Code-Specific", - "description": "Validate code syntax", - "best_for": ["code_generation", "programming"] - }, - "llm_judge": { - "name": "LLM Judge", - "category": "Custom", - "description": "Use another LLM as a judge", - "best_for": ["open_ended", "creative_tasks"] + { + "id": "pass_at_k", + "name": "Pass@K", + "description": "Percentage of problems solved correctly", + "applicable_tasks": ["code_generation"] } -} +] -async def broadcast_to_websockets(message: dict): - """Broadcast message to all connected websockets""" - if websocket_connections: - disconnected = [] - for websocket in websocket_connections: - try: - await websocket.send_text(json.dumps(message)) - except: - disconnected.append(websocket) - - # Remove disconnected websockets - for ws in disconnected: - websocket_connections.remove(ws) +async def send_websocket_message(evaluation_id: str, message: dict): + """Send message to WebSocket connection if exists""" + if evaluation_id in websocket_connections: + try: + await websocket_connections[evaluation_id].send_text(json.dumps(message)) + except Exception as e: + logger.error(f"Failed to send WebSocket message: {e}") -async def simulate_novaeval_evaluation(evaluation_id: str, request: EvaluationRequest): - """Simulate NovaEval evaluation with detailed logging""" +async def simulate_evaluation(evaluation_id: str, request: EvaluationRequest): + """Simulate a real evaluation process with detailed logging""" try: - logger.info(f"Starting NovaEval evaluation {evaluation_id}") + # Initialize evaluation + active_evaluations[evaluation_id] = { + "status": "running", + "progress": 0, + "current_step": "Initializing", + "results": {}, + "logs": [], + "start_time": datetime.now() + } - # Update status - active_evaluations[evaluation_id]["status"] = "running" - active_evaluations[evaluation_id]["start_time"] = datetime.now().isoformat() + total_steps = len(request.models) * 5 # 5 steps per model + current_step = 0 - # Broadcast start - await broadcast_to_websockets({ - "type": "evaluation_start", - "evaluation_id": evaluation_id, + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "INFO", "message": f"๐Ÿš€ Starting NovaEval evaluation with {len(request.models)} models" }) - # Simulate evaluation steps with detailed logging - steps = [ - "๐Ÿ”ง Initializing NovaEval framework", - "๐Ÿ“Š Loading dataset configuration", - "๐Ÿค– Preparing model interfaces", - "๐Ÿ” Validating evaluation parameters", - "๐Ÿ“ฅ Loading evaluation samples", - "โš™๏ธ Setting up scorers and metrics", - "๐Ÿš€ Starting model evaluations" - ] + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "INFO", + "message": f"๐Ÿ“Š Dataset: {request.dataset} | Sample size: {request.sample_size}" + }) - for i, step in enumerate(steps): - await asyncio.sleep(1) - progress = int((i + 1) / len(steps) * 30) # 30% for setup + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "INFO", + "message": f"๐Ÿ“ Metrics: {', '.join(request.metrics)}" + }) + + # Process each model + for model_id in request.models: + model_name = model_id.split('/')[-1] - log_message = f"[{datetime.now().strftime('%H:%M:%S')}] {step}" - logger.info(log_message) + # Step 1: Load model + current_step += 1 + await send_websocket_message(evaluation_id, { + "type": "progress", + "progress": (current_step / total_steps) * 100, + "current_step": f"Loading {model_name}" + }) - await broadcast_to_websockets({ - "type": "evaluation_progress", - "evaluation_id": evaluation_id, - "progress": progress, - "message": log_message, - "step": step + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "INFO", + "message": f"๐Ÿค– Loading model: {model_id}" }) - - # Simulate model evaluations - results = {} - for model_idx, model in enumerate(request.models): - model_info = None - for provider, models in SUPPORTED_MODELS.items(): - if model in models: - model_info = models[model] - break - if not model_info: - continue - - await broadcast_to_websockets({ - "type": "model_start", - "evaluation_id": evaluation_id, - "model": model, - "message": f"๐Ÿค– Starting evaluation for {model_info['name']}" + await asyncio.sleep(2) # Simulate model loading time + + # Step 2: Prepare dataset + current_step += 1 + await send_websocket_message(evaluation_id, { + "type": "progress", + "progress": (current_step / total_steps) * 100, + "current_step": f"Preparing dataset for {model_name}" }) - # Simulate model loading and evaluation - model_steps = [ - f"๐Ÿ“ฅ Loading {model_info['name']} ({model_info['provider']})", - f"๐Ÿ”ง Configuring model parameters (temp={request.temperature}, max_tokens={request.max_tokens})", - f"๐Ÿ“Š Running evaluation on {request.num_samples} samples", - f"๐Ÿ“ˆ Computing {', '.join(request.metrics)} metrics", - f"โœ… {model_info['name']} evaluation complete" - ] + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "INFO", + "message": f"๐Ÿ“ฅ Loading dataset: {request.dataset}" + }) - for step_idx, step in enumerate(model_steps): - await asyncio.sleep(2) - base_progress = 30 + (model_idx * 60 // len(request.models)) - step_progress = base_progress + (step_idx + 1) * (60 // len(request.models)) // len(model_steps) - - log_message = f"[{datetime.now().strftime('%H:%M:%S')}] {step}" - logger.info(log_message) - - await broadcast_to_websockets({ - "type": "evaluation_progress", - "evaluation_id": evaluation_id, - "progress": step_progress, - "message": log_message, - "model": model + await asyncio.sleep(1) + + # Step 3: Run evaluation + current_step += 1 + await send_websocket_message(evaluation_id, { + "type": "progress", + "progress": (current_step / total_steps) * 100, + "current_step": f"Evaluating {model_name}" + }) + + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "INFO", + "message": f"๐Ÿงช Running evaluation on {request.sample_size} samples" + }) + + # Simulate processing samples + for i in range(0, request.sample_size, 10): + await asyncio.sleep(0.5) + processed = min(i + 10, request.sample_size) + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "DEBUG", + "message": f"๐Ÿ“ Processed {processed}/{request.sample_size} samples" }) - - # Simulate detailed request/response logging for the evaluation step - if "Running evaluation" in step: - for sample_idx in range(min(3, request.num_samples)): # Show first 3 samples - await asyncio.sleep(1) - - # Simulate request - sample_request = { - "model": model, - "prompt": f"Sample question {sample_idx + 1} from {request.dataset}", - "temperature": request.temperature, - "max_tokens": request.max_tokens, - "top_p": request.top_p - } - - # Simulate response - sample_response = { - "response": f"Model response for sample {sample_idx + 1}", - "tokens_used": 45 + sample_idx * 10, - "latency_ms": 1200 + sample_idx * 200, - "cost_usd": model_info["cost_per_1k_tokens"] * (45 + sample_idx * 10) / 1000 - } - - await broadcast_to_websockets({ - "type": "request_response", - "evaluation_id": evaluation_id, - "model": model, - "sample_index": sample_idx + 1, - "request": sample_request, - "response": sample_response, - "message": f"๐Ÿ“ Sample {sample_idx + 1}/{request.num_samples}: {sample_response['latency_ms']}ms, {sample_response['tokens_used']} tokens" - }) - # Generate realistic results - import random - random.seed(hash(model + request.dataset)) # Consistent results + # Step 4: Calculate metrics + current_step += 1 + await send_websocket_message(evaluation_id, { + "type": "progress", + "progress": (current_step / total_steps) * 100, + "current_step": f"Calculating metrics for {model_name}" + }) + + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "INFO", + "message": f"๐Ÿ“Š Calculating metrics: {', '.join(request.metrics)}" + }) + + await asyncio.sleep(1) + + # Step 5: Generate results + current_step += 1 + await send_websocket_message(evaluation_id, { + "type": "progress", + "progress": (current_step / total_steps) * 100, + "current_step": f"Finalizing results for {model_name}" + }) - model_results = {} + # Generate realistic results + results = {} for metric in request.metrics: if metric == "accuracy": - score = 0.6 + random.random() * 0.35 # 60-95% + results[metric] = round(0.65 + (hash(model_id) % 30) / 100, 3) elif metric == "f1_score": - score = 0.55 + random.random() * 0.4 # 55-95% - elif metric in ["semantic_similarity", "bert_score"]: - score = 0.7 + random.random() * 0.25 # 70-95% - elif metric == "exact_match": - score = 0.4 + random.random() * 0.5 # 40-90% - else: - score = 0.5 + random.random() * 0.4 # 50-90% - - model_results[metric] = { - "score": round(score, 3), - "samples_evaluated": request.num_samples, - "metric_type": SUPPORTED_METRICS[metric]["category"] - } + results[metric] = round(0.60 + (hash(model_id) % 35) / 100, 3) + elif metric == "bleu": + results[metric] = round(0.25 + (hash(model_id) % 40) / 100, 3) + elif metric == "rouge": + results[metric] = round(0.30 + (hash(model_id) % 35) / 100, 3) + elif metric == "pass_at_k": + results[metric] = round(0.15 + (hash(model_id) % 50) / 100, 3) - results[model] = { - "model_info": model_info, - "metrics": model_results, - "total_tokens": request.num_samples * 50, - "total_cost": model_info["cost_per_1k_tokens"] * request.num_samples * 50 / 1000, - "avg_latency_ms": 1000 + random.randint(200, 800) - } + active_evaluations[evaluation_id]["results"][model_id] = results - await broadcast_to_websockets({ - "type": "model_complete", - "evaluation_id": evaluation_id, - "model": model, - "results": model_results, - "message": f"โœ… {model_info['name']} completed with {len(model_results)} metrics" + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "SUCCESS", + "message": f"โœ… {model_name} evaluation complete: {results}" }) + + await asyncio.sleep(1) - # Final processing - await asyncio.sleep(1) - await broadcast_to_websockets({ - "type": "evaluation_progress", - "evaluation_id": evaluation_id, - "progress": 95, - "message": f"[{datetime.now().strftime('%H:%M:%S')}] ๐Ÿ“Š Generating evaluation report" - }) - - await asyncio.sleep(2) - - # Complete evaluation + # Finalize evaluation active_evaluations[evaluation_id]["status"] = "completed" - active_evaluations[evaluation_id]["end_time"] = datetime.now().isoformat() - active_evaluations[evaluation_id]["results"] = results - - # Calculate summary statistics - total_cost = sum(r["total_cost"] for r in results.values()) - total_tokens = sum(r["total_tokens"] for r in results.values()) - avg_latency = sum(r["avg_latency_ms"] for r in results.values()) / len(results) + active_evaluations[evaluation_id]["progress"] = 100 + active_evaluations[evaluation_id]["end_time"] = datetime.now() - summary = { - "models_evaluated": len(request.models), - "samples_per_model": request.num_samples, - "total_samples": len(request.models) * request.num_samples, - "total_cost_usd": round(total_cost, 4), - "total_tokens": total_tokens, - "avg_latency_ms": round(avg_latency, 0), - "dataset": request.dataset, - "metrics": request.metrics - } - - await broadcast_to_websockets({ - "type": "evaluation_complete", - "evaluation_id": evaluation_id, - "progress": 100, - "results": results, - "summary": summary, - "message": f"๐ŸŽ‰ Evaluation complete! {len(request.models)} models evaluated on {request.num_samples} samples" + await send_websocket_message(evaluation_id, { + "type": "complete", + "results": active_evaluations[evaluation_id]["results"], + "message": "๐ŸŽ‰ Evaluation completed successfully!" }) - logger.info(f"NovaEval evaluation {evaluation_id} completed successfully") + await send_websocket_message(evaluation_id, { + "type": "log", + "timestamp": datetime.now().isoformat(), + "level": "SUCCESS", + "message": "๐ŸŽฏ All evaluations completed successfully!" + }) except Exception as e: - logger.error(f"Error in evaluation {evaluation_id}: {str(e)}") + logger.error(f"Evaluation failed: {e}") active_evaluations[evaluation_id]["status"] = "failed" active_evaluations[evaluation_id]["error"] = str(e) - await broadcast_to_websockets({ - "type": "evaluation_error", - "evaluation_id": evaluation_id, - "error": str(e), + await send_websocket_message(evaluation_id, { + "type": "error", "message": f"โŒ Evaluation failed: {str(e)}" }) +# API Endpoints @app.get("/", response_class=HTMLResponse) async def get_homepage(): - """Serve the comprehensive NovaEval interface""" - return HTMLResponse(content=f""" + """Serve the main application interface""" + return """ - NovaEval by Noveum.ai - Advanced AI Model Evaluation Platform + NovaEval by Noveum.ai - Advanced AI Model Evaluation - - + -
-
+
+
-
-
๐Ÿงช
+
+
+ +
-

NovaEval

-

Advanced AI Model Evaluation Platform

+

NovaEval

+

by Noveum.ai

-
- โšก Powered by Noveum.ai -
- - Visit Noveum.ai โ†’ - +

Advanced AI Model Evaluation Platform

+

Powered by Hugging Face Models

- -
- -
-
-
๐Ÿค–
-

Latest LLMs

-

Evaluate cutting-edge language models from OpenAI, Anthropic, AWS Bedrock, and Noveum.ai

-
-
- - GPT-4o, Claude 3.5 Sonnet -
-
- - Real-time model search -
-
- - Cost and performance metrics -
-
-
- -
-
๐Ÿ“Š
-

Comprehensive Datasets

-

Test models on academic benchmarks, code generation, and custom datasets

-
-
- - MMLU, HumanEval, HellaSwag -
-
- - Custom dataset upload -
-
- - Configurable sample sizes -
-
-
- -
-
โšก
-

Advanced Analytics

-

Real-time evaluation logs, detailed metrics, and interactive visualizations

-
-
- - Live request/response logs -
-
- - Multiple scoring metrics +
+ +
+ +
+ +
+
+ +

Select Models

-
- - Export results (JSON, CSV) + + +
+
+ + +
-
-
-
- - -
-
-

๐Ÿš€ Start New Evaluation

-
- Powered by NovaEval v0.3.3 -
-
- - -
- - - - -
- - -
-
-
-

Select Models (max 5)

-
- - + + +
+
+ + + +
-
+ +
-
-

Selected Models:

-
- -
+
+ 0 models selected
-
- -