File size: 7,660 Bytes
10b581c
 
f8cb9bd
10b581c
ef5add3
9dab6c2
10b581c
9dab6c2
 
10b581c
70f2266
2c5156d
42e07a5
10b581c
 
 
 
 
 
5694315
10b581c
 
 
 
 
 
 
 
 
 
 
 
5694315
9dab6c2
5694315
 
 
9dab6c2
5694315
ef5add3
51df367
 
 
2c5156d
 
 
 
 
 
 
 
057ef8f
 
2c5156d
9dab6c2
45a9d7f
51df367
 
 
2c5156d
 
 
 
42e07a5
2c5156d
 
 
42e07a5
dfaa5fc
cc5ea83
51df367
df253f2
dfe3b1e
 
51df367
1b6ca43
10b581c
5694315
51df367
 
 
 
 
 
 
 
 
 
 
 
df253f2
51df367
 
 
 
 
 
 
 
 
 
 
5694315
2c5156d
10b581c
2c5156d
057ef8f
2c5156d
057ef8f
2c5156d
 
057ef8f
f8cb9bd
 
 
 
 
 
 
 
 
 
 
 
 
 
42e07a5
057ef8f
 
 
ef5add3
057ef8f
10b581c
5694315
66d038e
10b581c
 
 
6a76f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b581c
 
 
 
192f60f
10b581c
 
 
 
 
 
 
 
ecf6d80
 
6a76f54
 
 
 
e65bce3
6a76f54
10b581c
 
ecf6d80
10b581c
 
 
 
 
 
 
 
df253f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr
import os
import subprocess
import torch
import gc
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel, T5Tokenizer

from datetime import datetime
import random
from moviepy.editor import VideoFileClip
import ffmpeg

from huggingface_hub import hf_hub_download

# Ensure 'checkpoint' directory exists
os.makedirs("checkpoints", exist_ok=True)

# Download LoRA weights
hf_hub_download(
    repo_id="wenqsun/DimensionX",
    filename="orbit_left_lora_weights.safetensors",
    local_dir="checkpoints"
)

hf_hub_download(
    repo_id="wenqsun/DimensionX",
    filename="orbit_up_lora_weights.safetensors",
    local_dir="checkpoints"
)

# Load models in the global scope
model_id = "THUDM/CogVideoX-5b-I2V"
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16).to("cpu")
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cpu")
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16).to("cpu")
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)

# Add this near the top after imports
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'

def calculate_resize_dimensions(width, height, max_width=1024):
    """Calculate new dimensions maintaining aspect ratio"""
    if width <= max_width:
        return width, height
    
    aspect_ratio = height / width
    new_width = max_width
    new_height = int(max_width * aspect_ratio)
    # Make height even number for video encoding
    new_height = new_height - (new_height % 2)
    return new_width, new_height

def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
    # Move everything to CPU initially
    pipe.to("cpu")
    torch.cuda.empty_cache()

    # Load and get original image dimensions
    image = load_image(image_path)
    original_width, original_height = image.size
    print(f"IMAGE INPUT SIZE: {original_width} x {original_height}")
    
    # Calculate target dimensions maintaining aspect ratio
    target_width, target_height = calculate_resize_dimensions(original_width, original_height)
    print(f"TARGET SIZE: {target_width} x {target_height}")
    
    lora_path = "checkpoints/"
    weight_name = "orbit_left_lora_weights.safetensors" if orbit_type == "Left" else "orbit_up_lora_weights.safetensors"
    lora_rank = 256
    adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

    # Load LoRA weights on CPU
    pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}")
    pipe.fuse_lora(lora_scale=1 / lora_rank)
    
    try:
        # Move to GPU just before inference
        pipe.to("cuda")
        torch.cuda.empty_cache()
        
        prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
        seed = random.randint(0, 2**8 - 1)
        
        with torch.inference_mode():
            video = pipe(
                image, 
                prompt, 
                num_inference_steps=50,
                guidance_scale=7.0,
                use_dynamic_cfg=True,
                generator=torch.Generator(device="cpu").manual_seed(seed)
            )
    finally:
        # Ensure cleanup happens even if inference fails
        pipe.to("cpu")
        pipe.unfuse_lora()
        pipe.unload_lora_weights()
        torch.cuda.empty_cache()
        gc.collect()
    
   # Generate initial output video
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    temp_path = f"output_{timestamp}_temp.mp4"
    final_path = f"output_{timestamp}.mp4"
    
    # First export the original video
    export_to_video(video.frames[0], temp_path, fps=8)
    
    try:
        # Use ffmpeg via subprocess
        cmd = [
            'ffmpeg',
            '-i', temp_path,
            '-vf', f'scale={target_width}:{target_height}',
            '-c:v', 'libx264',
            '-preset', 'medium',
            '-crf', '23',
            '-y',  # Overwrite output file if it exists
            final_path
        ]
        subprocess.run(cmd, check=True, capture_output=True)
    except subprocess.CalledProcessError as e:
        print(f"FFmpeg error: {e.stderr.decode()}")
        raise e
    finally:
        if os.path.exists(temp_path):
            os.remove(temp_path)
    
    return final_path

# Set up Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# DimensionX")
        gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/wenqsun/DimensionX">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://chenshuo20.github.io/DimensionX/">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
			<a href="https://arxiv.org/abs/2411.04928">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co/spaces/fffiloni/DimensionX?duplicate=true">
				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
			</a>
			<a href="https://huggingface.co/fffiloni">
				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
			</a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                image_in = gr.Image(label="Image Input", type="filepath")
                prompt = gr.Textbox(label="Prompt")
                orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left", interactive=True)
                submit_btn = gr.Button("Submit")
            with gr.Column():
                video_out = gr.Video(label="Video output")
                examples = gr.Examples(
                    examples = [
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
                            "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
                            "Left",
                            "./examples/output_astronaut_left.mp4"
                        ],
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
                            "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
                            "Up",
                            "./examples/output_astronaut_up.mp4"
                        ]
                    ],
                    inputs=[image_in, prompt, orbit_type, video_out]
                )

    submit_btn.click(
        fn=infer,
        inputs=[image_in, prompt, orbit_type],
        outputs=[video_out]
    )

demo.queue().launch(show_error=True, show_api=False, ssr_mode=False)