DimensionX / app.py
fffiloni's picture
Update app.py
057ef8f verified
raw
history blame
7.57 kB
import gradio as gr
import os
import torch
import gc
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel, T5Tokenizer
from datetime import datetime
import random
from moviepy.editor import VideoFileClip
from huggingface_hub import hf_hub_download
# Ensure 'checkpoint' directory exists
os.makedirs("checkpoints", exist_ok=True)
# Download LoRA weights
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_left_lora_weights.safetensors",
local_dir="checkpoints"
)
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_up_lora_weights.safetensors",
local_dir="checkpoints"
)
# Load models in the global scope
model_id = "THUDM/CogVideoX-5b-I2V"
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16).to("cpu")
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cpu")
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16).to("cpu")
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
# Add this near the top after imports
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
def calculate_resize_dimensions(width, height, max_width=1024):
"""Calculate new dimensions maintaining aspect ratio"""
if width <= max_width:
return width, height
aspect_ratio = height / width
new_width = max_width
new_height = int(max_width * aspect_ratio)
# Make height even number for video encoding
new_height = new_height - (new_height % 2)
return new_width, new_height
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
# Move everything to CPU initially
pipe.to("cpu")
torch.cuda.empty_cache()
# Load and get original image dimensions
image = load_image(image_path)
original_width, original_height = image.size
# Calculate target dimensions maintaining aspect ratio
target_width, target_height = calculate_resize_dimensions(original_width, original_height)
lora_path = "checkpoints/"
weight_name = "orbit_left_lora_weights.safetensors" if orbit_type == "Left" else "orbit_up_lora_weights.safetensors"
lora_rank = 256
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Load LoRA weights on CPU
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}")
pipe.fuse_lora(lora_scale=1 / lora_rank)
try:
# Move to GPU just before inference
pipe.to("cuda")
torch.cuda.empty_cache()
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
seed = random.randint(0, 2**8 - 1)
with torch.inference_mode():
video = pipe(
image,
prompt,
num_inference_steps=50,
guidance_scale=7.0,
use_dynamic_cfg=True,
generator=torch.Generator(device="cpu").manual_seed(seed)
)
finally:
# Ensure cleanup happens even if inference fails
pipe.to("cpu")
pipe.unfuse_lora()
pipe.unload_lora_weights()
torch.cuda.empty_cache()
gc.collect()
# Generate initial output video
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
temp_path = f"output_{timestamp}_temp.mp4"
final_path = f"output_{timestamp}.mp4"
# First export the original video
export_to_video(video.frames[0], temp_path, fps=8)
# Then resize it with moviepy
try:
video_clip = VideoFileClip(temp_path)
resized_clip = video_clip.resize(width=target_width, height=target_height)
resized_clip.write_videofile(
final_path,
codec='libx264',
fps=8,
preset='medium',
ffmpeg_params=['-crf', '23'],
verbose=False,
logger=None
)
finally:
# Make sure we clean up the clips
if 'video_clip' in locals():
video_clip.close()
if 'resized_clip' in locals():
resized_clip.close()
if os.path.exists(temp_path):
os.remove(temp_path)
return final_path
# Set up Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# DimensionX")
gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/wenqsun/DimensionX">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://chenshuo20.github.io/DimensionX/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2411.04928">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/DimensionX?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Image Input", type="filepath")
prompt = gr.Textbox(label="Prompt")
orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left", interactive=True)
submit_btn = gr.Button("Submit")
with gr.Column():
video_out = gr.Video(label="Video output")
examples = gr.Examples(
examples = [
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
"Left",
"./examples/output_astronaut_left.mp4"
],
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
"Up",
"./examples/output_astronaut_up.mp4"
]
],
inputs=[image_in, prompt, orbit_type, video_out]
)
submit_btn.click(
fn=infer,
inputs=[image_in, prompt, orbit_type],
outputs=[video_out]
)
demo.queue().launch(show_error=True, show_api=False, ssr_mode=False)