|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
from mmaudio.ext.autoencoder.edm2_utils import (MPConv1D, mp_silu, mp_sum, normalize) |
|
|
|
|
|
def nonlinearity(x): |
|
|
|
return mp_silu(x) |
|
|
|
|
|
class ResnetBlock1D(nn.Module): |
|
|
|
def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True): |
|
super().__init__() |
|
self.in_dim = in_dim |
|
out_dim = in_dim if out_dim is None else out_dim |
|
self.out_dim = out_dim |
|
self.use_conv_shortcut = conv_shortcut |
|
self.use_norm = use_norm |
|
|
|
self.conv1 = MPConv1D(in_dim, out_dim, kernel_size=kernel_size) |
|
self.conv2 = MPConv1D(out_dim, out_dim, kernel_size=kernel_size) |
|
if self.in_dim != self.out_dim: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = MPConv1D(in_dim, out_dim, kernel_size=kernel_size) |
|
else: |
|
self.nin_shortcut = MPConv1D(in_dim, out_dim, kernel_size=1) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
if self.use_norm: |
|
x = normalize(x, dim=1) |
|
|
|
h = x |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
|
|
h = nonlinearity(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_dim != self.out_dim: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return mp_sum(x, h, t=0.3) |
|
|
|
|
|
class AttnBlock1D(nn.Module): |
|
|
|
def __init__(self, in_channels, num_heads=1): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.num_heads = num_heads |
|
self.qkv = MPConv1D(in_channels, in_channels * 3, kernel_size=1) |
|
self.proj_out = MPConv1D(in_channels, in_channels, kernel_size=1) |
|
|
|
def forward(self, x): |
|
h = x |
|
y = self.qkv(h) |
|
y = y.reshape(y.shape[0], self.num_heads, -1, 3, y.shape[-1]) |
|
q, k, v = normalize(y, dim=2).unbind(3) |
|
|
|
q = rearrange(q, 'b h c l -> b h l c') |
|
k = rearrange(k, 'b h c l -> b h l c') |
|
v = rearrange(v, 'b h c l -> b h l c') |
|
|
|
h = F.scaled_dot_product_attention(q, k, v) |
|
h = rearrange(h, 'b h l c -> b (h c) l') |
|
|
|
h = self.proj_out(h) |
|
|
|
return mp_sum(x, h, t=0.3) |
|
|
|
|
|
class Upsample1D(nn.Module): |
|
|
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = MPConv1D(in_channels, in_channels, kernel_size=3) |
|
|
|
def forward(self, x): |
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample1D(nn.Module): |
|
|
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
self.conv1 = MPConv1D(in_channels, in_channels, kernel_size=1) |
|
self.conv2 = MPConv1D(in_channels, in_channels, kernel_size=1) |
|
|
|
def forward(self, x): |
|
|
|
if self.with_conv: |
|
x = self.conv1(x) |
|
|
|
x = F.avg_pool1d(x, kernel_size=2, stride=2) |
|
|
|
if self.with_conv: |
|
x = self.conv2(x) |
|
|
|
return x |
|
|