|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import Conv1d, ConvTranspose1d |
|
from torch.nn.utils.parametrizations import weight_norm |
|
from torch.nn.utils.parametrize import remove_parametrizations |
|
|
|
from mmaudio.ext.bigvgan import activations |
|
from mmaudio.ext.bigvgan.alias_free_torch import * |
|
from mmaudio.ext.bigvgan.utils import get_padding, init_weights |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
class AMPBlock1(torch.nn.Module): |
|
|
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None): |
|
super(AMPBlock1, self).__init__() |
|
self.h = h |
|
|
|
self.convs1 = nn.ModuleList([ |
|
weight_norm( |
|
Conv1d(channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm( |
|
Conv1d(channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm( |
|
Conv1d(channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm( |
|
Conv1d(channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm( |
|
Conv1d(channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm( |
|
Conv1d(channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs1) + len(self.convs2) |
|
|
|
if activation == 'snake': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
elif activation == 'snakebeta': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
else: |
|
raise NotImplementedError( |
|
"activation incorrectly specified. check the config file and look for 'activation'." |
|
) |
|
|
|
def forward(self, x): |
|
acts1, acts2 = self.activations[::2], self.activations[1::2] |
|
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): |
|
xt = a1(x) |
|
xt = c1(xt) |
|
xt = a2(xt) |
|
xt = c2(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_parametrizations(l, 'weight') |
|
for l in self.convs2: |
|
remove_parametrizations(l, 'weight') |
|
|
|
|
|
class AMPBlock2(torch.nn.Module): |
|
|
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None): |
|
super(AMPBlock2, self).__init__() |
|
self.h = h |
|
|
|
self.convs = nn.ModuleList([ |
|
weight_norm( |
|
Conv1d(channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm( |
|
Conv1d(channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))) |
|
]) |
|
self.convs.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs) |
|
|
|
if activation == 'snake': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
elif activation == 'snakebeta': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
else: |
|
raise NotImplementedError( |
|
"activation incorrectly specified. check the config file and look for 'activation'." |
|
) |
|
|
|
def forward(self, x): |
|
for c, a in zip(self.convs, self.activations): |
|
xt = a(x) |
|
xt = c(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_parametrizations(l, 'weight') |
|
|
|
|
|
class BigVGANVocoder(torch.nn.Module): |
|
|
|
def __init__(self, h): |
|
super().__init__() |
|
self.h = h |
|
|
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
|
|
|
|
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) |
|
|
|
|
|
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2 |
|
|
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): |
|
self.ups.append( |
|
nn.ModuleList([ |
|
weight_norm( |
|
ConvTranspose1d(h.upsample_initial_channel // (2**i), |
|
h.upsample_initial_channel // (2**(i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2)) |
|
])) |
|
|
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = h.upsample_initial_channel // (2**(i + 1)) |
|
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation)) |
|
|
|
|
|
if h.activation == "snake": |
|
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
elif h.activation == "snakebeta": |
|
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
else: |
|
raise NotImplementedError( |
|
"activation incorrectly specified. check the config file and look for 'activation'." |
|
) |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) |
|
|
|
|
|
for i in range(len(self.ups)): |
|
self.ups[i].apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, x): |
|
|
|
x = self.conv_pre(x) |
|
|
|
for i in range(self.num_upsamples): |
|
|
|
for i_up in range(len(self.ups[i])): |
|
x = self.ups[i][i_up](x) |
|
|
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
|
|
|
|
x = self.activation_post(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
for l_i in l: |
|
remove_parametrizations(l_i, 'weight') |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_parametrizations(self.conv_pre, 'weight') |
|
remove_parametrizations(self.conv_post, 'weight') |
|
|