File size: 32,293 Bytes
8a8dad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
import os
import imageio
import numpy as np
from tqdm import tqdm
from typing import Union
from einops import rearrange
from safetensors import safe_open
from transformers import CLIPTextModel
import torch
import torchvision
import torch.distributed as dist

def zero_rank_print(s):
    if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)

def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)

# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
    uncond_input = pipeline.tokenizer(
        [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
        return_tensors="pt"
    )
    uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
    text_input = pipeline.tokenizer(
        [prompt],
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
    context = torch.cat([uncond_embeddings, text_embeddings])

    return context

def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
              sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
    timestep, next_timestep = min(
        timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
    alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
    alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
    beta_prod_t = 1 - alpha_prod_t
    next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
    next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
    next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
    return next_sample

def get_noise_pred_single(latents, t, context, unet):
    noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
    return noise_pred

@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
    context = init_prompt(prompt, pipeline)
    uncond_embeddings, cond_embeddings = context.chunk(2)
    all_latent = [latent]
    latent = latent.clone().detach()
    for i in tqdm(range(num_inv_steps)):
        t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
        noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
        latent = next_step(noise_pred, t, latent, ddim_scheduler)
        all_latent.append(latent)
    return all_latent

@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
    ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
    return ddim_latents

def load_weights(
    magictime_pipeline,
    motion_module_path        = "",
    dreambooth_model_path     = "",
    magic_adapter_s_path      = "",
    magic_adapter_t_path      = "",
    magic_text_encoder_path   = "",
):
    # motion module
    unet_state_dict = {}
    if motion_module_path != "":
        print(f"load motion module from {motion_module_path}")
        try:
            motion_module_state_dict = torch.load(motion_module_path, map_location="cpu")
            if "state_dict" in motion_module_state_dict:
                motion_module_state_dict = motion_module_state_dict["state_dict"]
            for name, param in motion_module_state_dict.items():
                if "motion_modules." in name:
                    modified_name = name.removeprefix('module.') if name.startswith('module.') else name
                    unet_state_dict[modified_name] = param
        except Exception as e:
            print(f"Error loading motion module: {e}")
    try:
        missing, unexpected = magictime_pipeline.unet.load_state_dict(unet_state_dict, strict=False)
        assert len(unexpected) == 0, f"Unexpected keys in state_dict: {unexpected}"
        del unet_state_dict
    except Exception as e:
        print(f"Error loading state dict into UNet: {e}")

    # base model
    if dreambooth_model_path != "":
        print(f"load dreambooth model from {dreambooth_model_path}")
        if dreambooth_model_path.endswith(".safetensors"):
            dreambooth_state_dict = {}
            with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    dreambooth_state_dict[key] = f.get_tensor(key)
        elif dreambooth_model_path.endswith(".ckpt"):
            dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu")
            
        # 1. vae
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, magictime_pipeline.vae.config)
        magictime_pipeline.vae.load_state_dict(converted_vae_checkpoint)
        # 2. unet
        converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, magictime_pipeline.unet.config)
        magictime_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
        # 3. text_model
        magictime_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
        del dreambooth_state_dict

    # MagicAdapter and MagicTextEncoder
    if magic_adapter_s_path != "":
        print(f"load domain lora from {magic_adapter_s_path}")
        magic_adapter_s_state_dict = torch.load(magic_adapter_s_path, map_location="cpu")
        magictime_pipeline = load_diffusers_lora(magictime_pipeline, magic_adapter_s_state_dict, alpha=1.0)

    if magic_adapter_t_path != "" or magic_text_encoder_path != "":
        from swift import Swift

    if magic_adapter_t_path != "":
        print("load lora from swift for Unet")
        Swift.from_pretrained(magictime_pipeline.unet, magic_adapter_t_path)

    if magic_text_encoder_path != "":
        print("load lora from swift for text encoder")
        Swift.from_pretrained(magictime_pipeline.text_encoder, magic_text_encoder_path)
        
    return magictime_pipeline

def load_diffusers_lora(pipeline, state_dict, alpha=1.0):
    # directly update weight in diffusers model
    for key in state_dict:
        # only process lora down key
        if "up." in key: continue

        up_key    = key.replace(".down.", ".up.")
        model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "")
        model_key = model_key.replace("to_out.", "to_out.0.")
        layer_infos = model_key.split(".")[:-1]

        curr_layer = pipeline.unet
        while len(layer_infos) > 0:
            temp_name = layer_infos.pop(0)
            curr_layer = curr_layer.__getattr__(temp_name)

        weight_down = state_dict[key] * 2
        weight_up   = state_dict[up_key] * 2
        curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)

    return pipeline

def load_diffusers_lora_unet(unet, state_dict, alpha=1.0):
    # directly update weight in diffusers model
    for key in state_dict:
        # only process lora down key
        if "up." in key: continue

        up_key    = key.replace(".down.", ".up.")
        model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "")
        model_key = model_key.replace("to_out.", "to_out.0.")
        layer_infos = model_key.split(".")[:-1]

        curr_layer = unet
        while len(layer_infos) > 0:
            temp_name = layer_infos.pop(0)
            curr_layer = curr_layer.__getattr__(temp_name)

        weight_down = state_dict[key] * 2
        weight_up   = state_dict[up_key] * 2
        curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)

    return unet

def convert_lora(pipeline, state_dict, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6):
    visited = []

    # directly update weight in diffusers model
    for key in state_dict:
        # it is suggested to print out the key, it usually will be something like below
        # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"

        # as we have set the alpha beforehand, so just skip
        if ".alpha" in key or key in visited:
            continue

        if "text" in key:
            layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
            curr_layer = pipeline.text_encoder
        else:
            layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
            curr_layer = pipeline.unet

        # find the target layer
        temp_name = layer_infos.pop(0)
        while len(layer_infos) > -1:
            try:
                curr_layer = curr_layer.__getattr__(temp_name)
                if len(layer_infos) > 0:
                    temp_name = layer_infos.pop(0)
                elif len(layer_infos) == 0:
                    break
            except Exception:
                if len(temp_name) > 0:
                    temp_name += "_" + layer_infos.pop(0)
                else:
                    temp_name = layer_infos.pop(0)

        pair_keys = []
        if "lora_down" in key:
            pair_keys.append(key.replace("lora_down", "lora_up"))
            pair_keys.append(key)
        else:
            pair_keys.append(key)
            pair_keys.append(key.replace("lora_up", "lora_down"))

        # update weight
        if len(state_dict[pair_keys[0]].shape) == 4:
            weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
            weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
            curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3).to(curr_layer.weight.data.device)
        else:
            weight_up = state_dict[pair_keys[0]].to(torch.float32)
            weight_down = state_dict[pair_keys[1]].to(torch.float32)
            curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)

        # update visited list
        for item in pair_keys:
            visited.append(item)

    return pipeline

def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return ".".join(path.split(".")[n_shave_prefix_segments:])
    else:
        return ".".join(path.split(".")[:n_shave_prefix_segments])

def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item.replace("in_layers.0", "norm1")
        new_item = new_item.replace("in_layers.2", "conv1")

        new_item = new_item.replace("out_layers.0", "norm2")
        new_item = new_item.replace("out_layers.3", "conv2")

        new_item = new_item.replace("emb_layers.1", "time_emb_proj")
        new_item = new_item.replace("skip_connection", "conv_shortcut")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping

def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("nin_shortcut", "conv_shortcut")
        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping

def renew_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item
        mapping.append({"old": old_item, "new": new_item})
    return mapping

def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("norm.weight", "group_norm.weight")
        new_item = new_item.replace("norm.bias", "group_norm.bias")

        new_item = new_item.replace("q.weight", "query.weight")
        new_item = new_item.replace("q.bias", "query.bias")

        new_item = new_item.replace("k.weight", "key.weight")
        new_item = new_item.replace("k.bias", "key.bias")

        new_item = new_item.replace("v.weight", "value.weight")
        new_item = new_item.replace("v.bias", "value.bias")

        new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
        new_item = new_item.replace("proj_out.bias", "proj_attn.bias")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping

def assign_to_checkpoint(
    paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
    """
    This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
    attention layers, and takes into account additional replacements that may arise.

    Assigns the weights to the new checkpoint.
    """
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    # Splits the attention layers into three variables.
    if attention_paths_to_split is not None:
        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map["query"]] = query.reshape(target_shape)
            checkpoint[path_map["key"]] = key.reshape(target_shape)
            checkpoint[path_map["value"]] = value.reshape(target_shape)

    for path in paths:
        new_path = path["new"]

        # These have already been assigned
        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        # Global renaming happens here
        new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
        new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
        new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement["old"], replacement["new"])

        # proj_attn.weight has to be converted from conv 1D to linear
        if "proj_attn.weight" in new_path:
            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
        else:
            checkpoint[new_path] = old_checkpoint[path["old"]]

def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """

    # extract state_dict for UNet
    unet_state_dict = {}
    keys = list(checkpoint.keys())

    unet_key = "model.diffusion_model."

    # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
    if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
        print(f"Checkpoint {path} has both EMA and non-EMA weights.")
        print(
            "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
            " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
        )
        for key in keys:
            if key.startswith("model.diffusion_model"):
                flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
    else:
        if sum(k.startswith("model_ema") for k in keys) > 100:
            print(
                "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
            )

        for key in keys:
            if key.startswith(unet_key):
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)

    new_checkpoint = {}

    new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
    new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
    new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
    new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]

    if config["class_embed_type"] is None:
        # No parameters to port
        ...
    elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
        new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
        new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
        new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
        new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
    else:
        raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")

    new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
    new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
    new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
    new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
    new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
    new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]

        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.weight"
            )
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.bias"
            )

        paths = renew_resnet_paths(resnets)
        meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
        assign_to_checkpoint(
            paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
        )

        if len(attentions):
            paths = renew_attention_paths(attentions)
            meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

    resnet_0 = middle_blocks[0]
    attentions = middle_blocks[1]
    resnet_1 = middle_blocks[2]

    resnet_0_paths = renew_resnet_paths(resnet_0)
    assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)

    resnet_1_paths = renew_resnet_paths(resnet_1)
    assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)

    attentions_paths = renew_attention_paths(attentions)
    meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(
        attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
    )

    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)
        output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
        output_block_list = {}

        for layer in output_block_layers:
            layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
            if layer_id in output_block_list:
                output_block_list[layer_id].append(layer_name)
            else:
                output_block_list[layer_id] = [layer_name]

        if len(output_block_list) > 1:
            resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
            attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]

            resnet_0_paths = renew_resnet_paths(resnets)
            paths = renew_resnet_paths(resnets)

            meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

            output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
            if ["conv.bias", "conv.weight"] in output_block_list.values():
                index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.weight"
                ]
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.bias"
                ]

                # Clear attentions as they have been attributed above.
                if len(attentions) == 2:
                    attentions = []

            if len(attentions):
                paths = renew_attention_paths(attentions)
                meta_path = {
                    "old": f"output_blocks.{i}.1",
                    "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
                }
                assign_to_checkpoint(
                    paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
                )
        else:
            resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
            for path in resnet_0_paths:
                old_path = ".".join(["output_blocks", str(i), path["old"]])
                new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])

                new_checkpoint[new_path] = unet_state_dict[old_path]

    return new_checkpoint

def convert_ldm_clip_checkpoint(checkpoint):
    from transformers import CLIPTextModel
    text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
    
    keys = list(checkpoint.keys())
    keys.remove("cond_stage_model.transformer.text_model.embeddings.position_ids")

    text_model_dict = {}
    
    for key in keys:
        if key.startswith("cond_stage_model.transformer"):
            text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
    text_model.load_state_dict(text_model_dict)

    return text_model

def convert_ldm_clip_text_model(text_model, checkpoint):    
    keys = list(checkpoint.keys())
    keys.remove("cond_stage_model.transformer.text_model.embeddings.position_ids")

    text_model_dict = {}
    
    for key in keys:
        if key.startswith("cond_stage_model.transformer"):
            text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
    text_model.load_state_dict(text_model_dict)

    return text_model

def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["query.weight", "key.weight", "value.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]

def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    vae_state_dict = {}
    vae_key = "first_stage_model."
    keys = list(checkpoint.keys())
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}

    new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
    new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
    new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
    new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
    new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
    new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]

    new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
    new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
    new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
    new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
    new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
    new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]

    new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
    new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
    new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
    new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]

        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.weight"
            )
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.bias"
            )

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
    conv_attn_to_linear(new_checkpoint)

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]

        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
    conv_attn_to_linear(new_checkpoint)
    
    return new_checkpoint