File size: 11,533 Bytes
8a8dad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import copy
import torch
import random
import gradio as gr
from glob import glob
from omegaconf import OmegaConf
from safetensors import safe_open
from diffusers import AutoencoderKL
from diffusers import EulerDiscreteScheduler, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer
from utils.unet import UNet3DConditionModel
from utils.pipeline_magictime import MagicTimePipeline
from utils.util import save_videos_grid, convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint, load_diffusers_lora_unet, convert_ldm_clip_text_model
pretrained_model_path = "./ckpts/Base_Model/stable-diffusion-v1-5"
inference_config_path = "./sample_configs/RealisticVision.yaml"
magic_adapter_s_path = "./ckpts/Magic_Weights/magic_adapter_s/magic_adapter_s.ckpt"
magic_adapter_t_path = "./ckpts/Magic_Weights/magic_adapter_t"
magic_text_encoder_path = "./ckpts/Magic_Weights/magic_text_encoder"
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
examples = [
# 1-ToonYou
[
"ToonYou_beta6.safetensors",
"motion_module.ckpt",
"Bean sprouts grow and mature from seeds.",
"worst quality, low quality, letterboxed",
512, 512, "13204175718326964000"
],
# 2-RCNZ
[
"RcnzCartoon.safetensors",
"motion_module.ckpt",
"Time-lapse of a simple modern house's construction in a Minecraft virtual environment: beginning with an avatar laying a white foundation, progressing through wall erection and interior furnishing, to adding roof and exterior details, and completed with landscaping and a tall chimney.",
"worst quality, low quality, letterboxed",
512, 512, "1268480012"
],
# 3-RealisticVision
[
"RealisticVisionV60B1_v51VAE.safetensors",
"motion_module.ckpt",
"Cherry blossoms transitioning from tightly closed buds to a peak state of bloom. The progression moves through stages of bud swelling, petal exposure, and gradual opening, culminating in a full and vibrant display of open blossoms.",
"worst quality, low quality, letterboxed",
512, 512, "2038801077"
]
]
# clean Grdio cache
print(f"### Cleaning cached examples ...")
os.system(f"rm -rf gradio_cached_examples/")
class MagicTimeController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "ckpts", "Base_Model")
self.motion_module_dir = os.path.join(self.basedir, "ckpts", "Base_Model", "motion_module")
self.personalized_model_dir = os.path.join(self.basedir, "ckpts", "DreamBooth")
self.savedir = os.path.join(self.basedir, "outputs")
os.makedirs(self.savedir, exist_ok=True)
self.dreambooth_list = []
self.motion_module_list = []
self.selected_dreambooth = None
self.selected_motion_module = None
self.refresh_motion_module()
self.refresh_personalized_model()
# config models
self.inference_config = OmegaConf.load(inference_config_path)[1]
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda()
self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda()
self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
self.text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
self.update_dreambooth(self.dreambooth_list[0])
self.update_motion_module(self.motion_module_list[0])
from swift import Swift
magic_adapter_s_state_dict = torch.load(magic_adapter_s_path, map_location="cpu")
self.unet = load_diffusers_lora_unet(self.unet, magic_adapter_s_state_dict, alpha=1.0)
self.unet = Swift.from_pretrained(self.unet, magic_adapter_t_path)
self.text_encoder = Swift.from_pretrained(self.text_encoder, magic_text_encoder_path)
def refresh_motion_module(self):
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt"))
self.motion_module_list = [os.path.basename(p) for p in motion_module_list]
def refresh_personalized_model(self):
dreambooth_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors"))
self.dreambooth_list = [os.path.basename(p) for p in dreambooth_list]
def update_dreambooth(self, dreambooth_dropdown):
self.selected_dreambooth = dreambooth_dropdown
dreambooth_dropdown = os.path.join(self.personalized_model_dir, dreambooth_dropdown)
dreambooth_state_dict = {}
with safe_open(dreambooth_dropdown, framework="pt", device="cpu") as f:
for key in f.keys(): dreambooth_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, self.vae.config)
self.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, self.unet.config)
self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
text_model = copy.deepcopy(self.text_model)
self.text_encoder = convert_ldm_clip_text_model(text_model, dreambooth_state_dict)
return gr.Dropdown()
def update_motion_module(self, motion_module_dropdown):
self.selected_motion_module = motion_module_dropdown
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown)
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu")
_, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
return gr.Dropdown()
def magictime(
self,
dreambooth_dropdown,
motion_module_dropdown,
prompt_textbox,
negative_prompt_textbox,
width_slider,
height_slider,
seed_textbox,
):
if self.selected_dreambooth != dreambooth_dropdown: self.update_dreambooth(dreambooth_dropdown)
if self.selected_motion_module != motion_module_dropdown: self.update_motion_module(motion_module_dropdown)
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention()
pipeline = MagicTimePipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet,
scheduler=DDIMScheduler(**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs))
).to("cuda")
if int(seed_textbox) > 0: seed = int(seed_textbox)
else: seed = random.randint(1, 1e16)
torch.manual_seed(int(seed))
assert seed == torch.initial_seed()
print(f"### seed: {seed}")
generator = torch.Generator(device="cuda")
generator.manual_seed(seed)
sample = pipeline(
prompt_textbox,
negative_prompt = negative_prompt_textbox,
num_inference_steps = 25,
guidance_scale = 8.,
width = width_slider,
height = height_slider,
video_length = 16,
generator = generator,
).videos
save_sample_path = os.path.join(self.savedir, f"sample.mp4")
save_videos_grid(sample, save_sample_path)
json_config = {
"prompt": prompt_textbox,
"n_prompt": negative_prompt_textbox,
"width": width_slider,
"height": height_slider,
"seed": seed,
"dreambooth": dreambooth_dropdown,
}
return gr.Video(value=save_sample_path), gr.Json(value=json_config)
controller = MagicTimeController()
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
<h2 align="center"> <a href="https://github.com/PKU-YuanGroup/MagicTime">MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators</a></h2>
<h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for the latest update. </h2>
[GitHub](https://img.shields.io/github/stars/PKU-YuanGroup/MagicTime) | [arXiv](https://arxiv.org/abs/2404.05014) | [Home Page](https://pku-yuangroup.github.io/MagicTime/) | [Dataset](https://drive.google.com/drive/folders/1WsomdkmSp3ql3ImcNsmzFuSQ9Qukuyr8?usp=sharing)
"""
)
with gr.Row():
with gr.Column():
dreambooth_dropdown = gr.Dropdown( label="DreamBooth Model", choices=controller.dreambooth_list, value=controller.dreambooth_list[0], interactive=True )
motion_module_dropdown = gr.Dropdown( label="Motion Module", choices=controller.motion_module_list, value=controller.motion_module_list[0], interactive=True )
dreambooth_dropdown.change(fn=controller.update_dreambooth, inputs=[dreambooth_dropdown], outputs=[dreambooth_dropdown])
motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown])
prompt_textbox = gr.Textbox( label="Prompt", lines=3 )
negative_prompt_textbox = gr.Textbox( label="Negative Prompt", lines=3, value="worst quality, low quality, nsfw, logo")
with gr.Accordion("Advance", open=False):
with gr.Row():
width_slider = gr.Slider( label="Width", value=512, minimum=256, maximum=1024, step=64 )
height_slider = gr.Slider( label="Height", value=512, minimum=256, maximum=1024, step=64 )
with gr.Row():
seed_textbox = gr.Textbox( label="Seed", value=-1)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e16)), inputs=[], outputs=[seed_textbox])
generate_button = gr.Button( value="Generate", variant='primary' )
with gr.Column():
result_video = gr.Video( label="Generated Animation", interactive=False )
json_config = gr.Json( label="Config", value=None )
inputs = [dreambooth_dropdown, motion_module_dropdown, prompt_textbox, negative_prompt_textbox, width_slider, height_slider, seed_textbox]
outputs = [result_video, json_config]
generate_button.click( fn=controller.magictime, inputs=inputs, outputs=outputs )
gr.Examples( fn=controller.magictime, examples=examples, inputs=inputs, outputs=outputs, cache_examples=True )
return demo
if __name__ == "__main__":
demo = ui()
demo.queue(max_size=20)
demo.launch() |