|
import os, csv, random |
|
import numpy as np |
|
from decord import VideoReader |
|
import torch |
|
import torchvision.transforms as transforms |
|
from torch.utils.data.dataset import Dataset |
|
|
|
|
|
class ChronoMagic(Dataset): |
|
def __init__( |
|
self, |
|
csv_path, video_folder, |
|
sample_size=512, sample_stride=4, sample_n_frames=16, |
|
is_image=False, |
|
is_uniform=True, |
|
): |
|
with open(csv_path, 'r') as csvfile: |
|
self.dataset = list(csv.DictReader(csvfile)) |
|
self.length = len(self.dataset) |
|
|
|
self.video_folder = video_folder |
|
self.sample_stride = sample_stride |
|
self.sample_n_frames = sample_n_frames |
|
self.is_image = is_image |
|
self.is_uniform = is_uniform |
|
|
|
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size) |
|
self.pixel_transforms = transforms.Compose([ |
|
transforms.RandomHorizontalFlip(), |
|
transforms.Resize(sample_size[0], interpolation=transforms.InterpolationMode.BICUBIC), |
|
transforms.CenterCrop(sample_size), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), |
|
]) |
|
|
|
def _get_frame_indices_adjusted(self, video_length, n_frames): |
|
indices = list(range(video_length)) |
|
additional_frames_needed = n_frames - video_length |
|
|
|
repeat_indices = [] |
|
for i in range(additional_frames_needed): |
|
index_to_repeat = i % video_length |
|
repeat_indices.append(indices[index_to_repeat]) |
|
|
|
all_indices = indices + repeat_indices |
|
all_indices.sort() |
|
|
|
return all_indices |
|
|
|
def _generate_frame_indices(self, video_length, n_frames, sample_stride, is_transmit): |
|
prob_execute_original = 1 if int(is_transmit) == 0 else 0 |
|
|
|
|
|
if random.random() < prob_execute_original: |
|
if video_length <= n_frames: |
|
return self._get_frame_indices_adjusted(video_length, n_frames) |
|
else: |
|
interval = (video_length - 1) / (n_frames - 1) |
|
indices = [int(round(i * interval)) for i in range(n_frames)] |
|
indices[-1] = video_length - 1 |
|
return indices |
|
else: |
|
if video_length <= n_frames: |
|
return self._get_frame_indices_adjusted(video_length, n_frames) |
|
else: |
|
clip_length = min(video_length, (n_frames - 1) * sample_stride + 1) |
|
start_idx = random.randint(0, video_length - clip_length) |
|
return np.linspace(start_idx, start_idx + clip_length - 1, n_frames, dtype=int).tolist() |
|
|
|
def get_batch(self, idx): |
|
video_dict = self.dataset[idx] |
|
videoid, name, is_transmit = video_dict['videoid'], video_dict['name'], video_dict['is_transmit'] |
|
|
|
video_dir = os.path.join(self.video_folder, f"{videoid}.mp4") |
|
video_reader = VideoReader(video_dir, num_threads=0) |
|
video_length = len(video_reader) |
|
|
|
batch_index = self._generate_frame_indices(video_length, self.sample_n_frames, self.sample_stride, is_transmit) if not self.is_image else [random.randint(0, video_length - 1)] |
|
|
|
pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2) / 255. |
|
del video_reader |
|
|
|
if self.is_image: |
|
pixel_values = pixel_values[0] |
|
|
|
return pixel_values, name, videoid |
|
|
|
def __len__(self): |
|
return self.length |
|
|
|
def __getitem__(self, idx): |
|
while True: |
|
try: |
|
pixel_values, name, videoid = self.get_batch(idx) |
|
break |
|
|
|
except Exception as e: |
|
idx = random.randint(0, self.length-1) |
|
|
|
pixel_values = self.pixel_transforms(pixel_values) |
|
sample = dict(pixel_values=pixel_values, text=name, id=videoid) |
|
return sample |