MagicTime / app.py
BestWishYsh's picture
Update app.py
3adb503 verified
raw
history blame
12.5 kB
import os
import copy
import torch
import random
import gradio as gr
from glob import glob
from omegaconf import OmegaConf
from safetensors import safe_open
from diffusers import AutoencoderKL
from diffusers import EulerDiscreteScheduler, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer
from utils.unet import UNet3DConditionModel
from utils.pipeline_magictime import MagicTimePipeline
from utils.util import save_videos_grid, convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint, load_diffusers_lora_unet, convert_ldm_clip_text_model
pretrained_model_path = "./ckpts/Base_Model/stable-diffusion-v1-5"
inference_config_path = "./sample_configs/RealisticVision.yaml"
magic_adapter_s_path = "./ckpts/Magic_Weights/magic_adapter_s/magic_adapter_s.ckpt"
magic_adapter_t_path = "./ckpts/Magic_Weights/magic_adapter_t"
magic_text_encoder_path = "./ckpts/Magic_Weights/magic_text_encoder"
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
examples = [
# 1-RealisticVision
[
"RealisticVisionV60B1_v51VAE.safetensors",
"motion_module.ckpt",
"Cherry blossoms transitioning from tightly closed buds to a peak state of bloom. The progression moves through stages of bud swelling, petal exposure, and gradual opening, culminating in a full and vibrant display of open blossoms.",
"worst quality, low quality, letterboxed",
512, 512, "2038801077"
],
# 2-RCNZ
[
"RcnzCartoon.safetensors",
"motion_module.ckpt",
"Time-lapse of a simple modern house's construction in a Minecraft virtual environment: beginning with an avatar laying a white foundation, progressing through wall erection and interior furnishing, to adding roof and exterior details, and completed with landscaping and a tall chimney.",
"worst quality, low quality, letterboxed",
512, 512, "1268480012"
],
# 3-ToonYou
[
"ToonYou_beta6.safetensors",
"motion_module.ckpt",
"Bean sprouts grow and mature from seeds.",
"worst quality, low quality, letterboxed",
512, 512, "1496541313"
]
]
# clean Grdio cache
print(f"### Cleaning cached examples ...")
os.system(f"rm -rf gradio_cached_examples/")
class MagicTimeController:
def __init__(self, tokenizer, text_encoder, vae, unet, text_model):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "ckpts", "Base_Model")
self.motion_module_dir = os.path.join(self.basedir, "ckpts", "Base_Model", "motion_module")
self.personalized_model_dir = os.path.join(self.basedir, "ckpts", "DreamBooth")
self.savedir = os.path.join(self.basedir, "outputs")
os.makedirs(self.savedir, exist_ok=True)
self.dreambooth_list = []
self.motion_module_list = []
self.selected_dreambooth = None
self.selected_motion_module = None
self.refresh_motion_module()
self.refresh_personalized_model()
# config models
self.inference_config = OmegaConf.load(inference_config_path)[1]
# self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
# self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda()
# self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda()
# self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
# self.text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
self.tokenizer = tokenizer
self.text_encoder = text_encoder
self.vae = vae
self.unet = unet
self.text_model = text_model
self.update_motion_module(self.motion_module_list[0])
self.update_dreambooth(self.dreambooth_list[0])
def refresh_motion_module(self):
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt"))
self.motion_module_list = [os.path.basename(p) for p in motion_module_list]
def refresh_personalized_model(self):
dreambooth_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors"))
self.dreambooth_list = [os.path.basename(p) for p in dreambooth_list]
def update_dreambooth(self, dreambooth_dropdown):
self.selected_dreambooth = dreambooth_dropdown
dreambooth_dropdown = os.path.join(self.personalized_model_dir, dreambooth_dropdown)
dreambooth_state_dict = {}
with safe_open(dreambooth_dropdown, framework="pt", device="cpu") as f:
for key in f.keys(): dreambooth_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, self.vae.config)
self.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, self.unet.config)
self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
text_model = copy.deepcopy(self.text_model)
self.text_encoder = convert_ldm_clip_text_model(text_model, dreambooth_state_dict)
from swift import Swift
magic_adapter_s_state_dict = torch.load(magic_adapter_s_path, map_location="cpu")
self.unet = load_diffusers_lora_unet(self.unet, magic_adapter_s_state_dict, alpha=1.0)
self.unet = Swift.from_pretrained(self.unet, magic_adapter_t_path)
self.text_encoder = Swift.from_pretrained(self.text_encoder, magic_text_encoder_path)
return gr.Dropdown()
def update_motion_module(self, motion_module_dropdown):
self.selected_motion_module = motion_module_dropdown
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown)
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu")
_, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
return gr.Dropdown()
def magictime(
self,
dreambooth_dropdown,
motion_module_dropdown,
prompt_textbox,
negative_prompt_textbox,
width_slider,
height_slider,
seed_textbox,
):
if self.selected_motion_module != motion_module_dropdown: self.update_motion_module(motion_module_dropdown)
if self.selected_dreambooth != dreambooth_dropdown: self.update_dreambooth(dreambooth_dropdown)
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention()
pipeline = MagicTimePipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet,
scheduler=DDIMScheduler(**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs))
).to("cuda")
if int(seed_textbox) > 0: seed = int(seed_textbox)
else: seed = random.randint(1, 1e16)
torch.manual_seed(int(seed))
assert seed == torch.initial_seed()
print(f"### seed: {seed}")
generator = torch.Generator(device="cuda")
generator.manual_seed(seed)
sample = pipeline(
prompt_textbox,
negative_prompt = negative_prompt_textbox,
num_inference_steps = 25,
guidance_scale = 8.,
width = width_slider,
height = height_slider,
video_length = 16,
generator = generator,
).videos
save_sample_path = os.path.join(self.savedir, f"sample.mp4")
save_videos_grid(sample, save_sample_path)
json_config = {
"prompt": prompt_textbox,
"n_prompt": negative_prompt_textbox,
"width": width_slider,
"height": height_slider,
"seed": seed,
"dreambooth": dreambooth_dropdown,
}
return gr.Video(value=save_sample_path), gr.Json(value=json_config)
inference_config = OmegaConf.load(inference_config_path)[1]
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda()
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda()
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs)).cuda()
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
controller = MagicTimeController(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, unet=unet, text_model=text_model)
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
<h2 align="center"> <a href="https://github.com/PKU-YuanGroup/MagicTime">MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators</a></h2>
<h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for the latest update. </h2>
[GitHub](https://img.shields.io/github/stars/PKU-YuanGroup/MagicTime) | [arXiv](https://arxiv.org/abs/2404.05014) | [Home Page](https://pku-yuangroup.github.io/MagicTime/) | [Dataset](https://drive.google.com/drive/folders/1WsomdkmSp3ql3ImcNsmzFuSQ9Qukuyr8?usp=sharing)
"""
)
with gr.Row():
with gr.Column():
dreambooth_dropdown = gr.Dropdown( label="DreamBooth Model", choices=controller.dreambooth_list, value=controller.dreambooth_list[0], interactive=True )
motion_module_dropdown = gr.Dropdown( label="Motion Module", choices=controller.motion_module_list, value=controller.motion_module_list[0], interactive=True )
dreambooth_dropdown.change(fn=controller.update_dreambooth, inputs=[dreambooth_dropdown], outputs=[dreambooth_dropdown])
motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown])
prompt_textbox = gr.Textbox( label="Prompt", lines=3 )
negative_prompt_textbox = gr.Textbox( label="Negative Prompt", lines=3, value="worst quality, low quality, nsfw, logo")
with gr.Accordion("Advance", open=False):
with gr.Row():
width_slider = gr.Slider( label="Width", value=512, minimum=256, maximum=1024, step=64 )
height_slider = gr.Slider( label="Height", value=512, minimum=256, maximum=1024, step=64 )
with gr.Row():
seed_textbox = gr.Textbox( label="Seed", value=-1)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e16)), inputs=[], outputs=[seed_textbox])
generate_button = gr.Button( value="Generate", variant='primary' )
with gr.Column():
result_video = gr.Video( label="Generated Animation", interactive=False )
json_config = gr.Json( label="Config", value=None )
inputs = [dreambooth_dropdown, motion_module_dropdown, prompt_textbox, negative_prompt_textbox, width_slider, height_slider, seed_textbox]
outputs = [result_video, json_config]
generate_button.click( fn=controller.magictime, inputs=inputs, outputs=outputs )
gr.Examples( fn=controller.magictime, examples=examples, inputs=inputs, outputs=outputs, cache_examples=True )
return demo
if __name__ == "__main__":
demo = ui()
demo.queue(max_size=20)
demo.launch()