|
import os |
|
import copy |
|
import torch |
|
import random |
|
import gradio as gr |
|
from glob import glob |
|
from omegaconf import OmegaConf |
|
from safetensors import safe_open |
|
from diffusers import AutoencoderKL |
|
from diffusers import EulerDiscreteScheduler, DDIMScheduler |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from utils.unet import UNet3DConditionModel |
|
from utils.pipeline_magictime import MagicTimePipeline |
|
from utils.util import save_videos_grid, convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint, load_diffusers_lora_unet, convert_ldm_clip_text_model |
|
|
|
pretrained_model_path = "./ckpts/Base_Model/stable-diffusion-v1-5" |
|
inference_config_path = "./sample_configs/RealisticVision.yaml" |
|
magic_adapter_s_path = "./ckpts/Magic_Weights/magic_adapter_s/magic_adapter_s.ckpt" |
|
magic_adapter_t_path = "./ckpts/Magic_Weights/magic_adapter_t" |
|
magic_text_encoder_path = "./ckpts/Magic_Weights/magic_text_encoder" |
|
|
|
css = """ |
|
.toolbutton { |
|
margin-buttom: 0em 0em 0em 0em; |
|
max-width: 2.5em; |
|
min-width: 2.5em !important; |
|
height: 2.5em; |
|
} |
|
""" |
|
|
|
examples = [ |
|
|
|
[ |
|
"ToonYou_beta6.safetensors", |
|
"motion_module.ckpt", |
|
"Bean sprouts grow and mature from seeds.", |
|
"worst quality, low quality, letterboxed", |
|
512, 512, "13204175718326964000" |
|
], |
|
|
|
[ |
|
"RcnzCartoon.safetensors", |
|
"motion_module.ckpt", |
|
"Time-lapse of a simple modern house's construction in a Minecraft virtual environment: beginning with an avatar laying a white foundation, progressing through wall erection and interior furnishing, to adding roof and exterior details, and completed with landscaping and a tall chimney.", |
|
"worst quality, low quality, letterboxed", |
|
512, 512, "1268480012" |
|
], |
|
|
|
[ |
|
"RealisticVisionV60B1_v51VAE.safetensors", |
|
"motion_module.ckpt", |
|
"Cherry blossoms transitioning from tightly closed buds to a peak state of bloom. The progression moves through stages of bud swelling, petal exposure, and gradual opening, culminating in a full and vibrant display of open blossoms.", |
|
"worst quality, low quality, letterboxed", |
|
512, 512, "2038801077" |
|
] |
|
] |
|
|
|
|
|
print(f"### Cleaning cached examples ...") |
|
os.system(f"rm -rf gradio_cached_examples/") |
|
|
|
|
|
class MagicTimeController: |
|
def __init__(self): |
|
|
|
|
|
self.basedir = os.getcwd() |
|
self.stable_diffusion_dir = os.path.join(self.basedir, "ckpts", "Base_Model") |
|
self.motion_module_dir = os.path.join(self.basedir, "ckpts", "Base_Model", "motion_module") |
|
self.personalized_model_dir = os.path.join(self.basedir, "ckpts", "DreamBooth") |
|
self.savedir = os.path.join(self.basedir, "outputs") |
|
os.makedirs(self.savedir, exist_ok=True) |
|
|
|
self.dreambooth_list = [] |
|
self.motion_module_list = [] |
|
|
|
self.selected_dreambooth = None |
|
self.selected_motion_module = None |
|
|
|
self.refresh_motion_module() |
|
self.refresh_personalized_model() |
|
|
|
|
|
self.inference_config = OmegaConf.load(inference_config_path)[1] |
|
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") |
|
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda() |
|
self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda() |
|
self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda() |
|
|
|
self.text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
self.update_dreambooth(self.dreambooth_list[0]) |
|
self.update_motion_module(self.motion_module_list[0]) |
|
|
|
from swift import Swift |
|
magic_adapter_s_state_dict = torch.load(magic_adapter_s_path, map_location="cpu") |
|
self.unet = load_diffusers_lora_unet(self.unet, magic_adapter_s_state_dict, alpha=1.0) |
|
self.unet = Swift.from_pretrained(self.unet, magic_adapter_t_path) |
|
self.text_encoder = Swift.from_pretrained(self.text_encoder, magic_text_encoder_path) |
|
|
|
|
|
def refresh_motion_module(self): |
|
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt")) |
|
self.motion_module_list = [os.path.basename(p) for p in motion_module_list] |
|
|
|
def refresh_personalized_model(self): |
|
dreambooth_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors")) |
|
self.dreambooth_list = [os.path.basename(p) for p in dreambooth_list] |
|
|
|
def update_dreambooth(self, dreambooth_dropdown): |
|
self.selected_dreambooth = dreambooth_dropdown |
|
|
|
dreambooth_dropdown = os.path.join(self.personalized_model_dir, dreambooth_dropdown) |
|
dreambooth_state_dict = {} |
|
with safe_open(dreambooth_dropdown, framework="pt", device="cpu") as f: |
|
for key in f.keys(): dreambooth_state_dict[key] = f.get_tensor(key) |
|
|
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, self.vae.config) |
|
self.vae.load_state_dict(converted_vae_checkpoint) |
|
|
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, self.unet.config) |
|
self.unet.load_state_dict(converted_unet_checkpoint, strict=False) |
|
|
|
text_model = copy.deepcopy(self.text_model) |
|
self.text_encoder = convert_ldm_clip_text_model(text_model, dreambooth_state_dict) |
|
return gr.Dropdown() |
|
|
|
def update_motion_module(self, motion_module_dropdown): |
|
self.selected_motion_module = motion_module_dropdown |
|
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown) |
|
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu") |
|
_, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False) |
|
assert len(unexpected) == 0 |
|
return gr.Dropdown() |
|
|
|
|
|
def magictime( |
|
self, |
|
dreambooth_dropdown, |
|
motion_module_dropdown, |
|
prompt_textbox, |
|
negative_prompt_textbox, |
|
width_slider, |
|
height_slider, |
|
seed_textbox, |
|
): |
|
if self.selected_dreambooth != dreambooth_dropdown: self.update_dreambooth(dreambooth_dropdown) |
|
if self.selected_motion_module != motion_module_dropdown: self.update_motion_module(motion_module_dropdown) |
|
|
|
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention() |
|
|
|
pipeline = MagicTimePipeline( |
|
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, |
|
scheduler=DDIMScheduler(**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs)) |
|
).to("cuda") |
|
|
|
if int(seed_textbox) > 0: seed = int(seed_textbox) |
|
else: seed = random.randint(1, 1e16) |
|
torch.manual_seed(int(seed)) |
|
|
|
assert seed == torch.initial_seed() |
|
print(f"### seed: {seed}") |
|
|
|
generator = torch.Generator(device="cuda") |
|
generator.manual_seed(seed) |
|
|
|
sample = pipeline( |
|
prompt_textbox, |
|
negative_prompt = negative_prompt_textbox, |
|
num_inference_steps = 25, |
|
guidance_scale = 8., |
|
width = width_slider, |
|
height = height_slider, |
|
video_length = 16, |
|
generator = generator, |
|
).videos |
|
|
|
save_sample_path = os.path.join(self.savedir, f"sample.mp4") |
|
save_videos_grid(sample, save_sample_path) |
|
|
|
json_config = { |
|
"prompt": prompt_textbox, |
|
"n_prompt": negative_prompt_textbox, |
|
"width": width_slider, |
|
"height": height_slider, |
|
"seed": seed, |
|
"dreambooth": dreambooth_dropdown, |
|
} |
|
return gr.Video(value=save_sample_path), gr.Json(value=json_config) |
|
|
|
controller = MagicTimeController() |
|
|
|
|
|
def ui(): |
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown( |
|
""" |
|
<h2 align="center"> <a href="https://github.com/PKU-YuanGroup/MagicTime">MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators</a></h2> |
|
<h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for the latest update. </h2> |
|
|
|
[GitHub](https://img.shields.io/github/stars/PKU-YuanGroup/MagicTime) | [arXiv](https://arxiv.org/abs/2404.05014) | [Home Page](https://pku-yuangroup.github.io/MagicTime/) | [Dataset](https://drive.google.com/drive/folders/1WsomdkmSp3ql3ImcNsmzFuSQ9Qukuyr8?usp=sharing) |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
dreambooth_dropdown = gr.Dropdown( label="DreamBooth Model", choices=controller.dreambooth_list, value=controller.dreambooth_list[0], interactive=True ) |
|
motion_module_dropdown = gr.Dropdown( label="Motion Module", choices=controller.motion_module_list, value=controller.motion_module_list[0], interactive=True ) |
|
|
|
dreambooth_dropdown.change(fn=controller.update_dreambooth, inputs=[dreambooth_dropdown], outputs=[dreambooth_dropdown]) |
|
motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown]) |
|
|
|
prompt_textbox = gr.Textbox( label="Prompt", lines=3 ) |
|
negative_prompt_textbox = gr.Textbox( label="Negative Prompt", lines=3, value="worst quality, low quality, nsfw, logo") |
|
|
|
with gr.Accordion("Advance", open=False): |
|
with gr.Row(): |
|
width_slider = gr.Slider( label="Width", value=512, minimum=256, maximum=1024, step=64 ) |
|
height_slider = gr.Slider( label="Height", value=512, minimum=256, maximum=1024, step=64 ) |
|
with gr.Row(): |
|
seed_textbox = gr.Textbox( label="Seed", value=-1) |
|
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton") |
|
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e16)), inputs=[], outputs=[seed_textbox]) |
|
|
|
generate_button = gr.Button( value="Generate", variant='primary' ) |
|
|
|
with gr.Column(): |
|
result_video = gr.Video( label="Generated Animation", interactive=False ) |
|
json_config = gr.Json( label="Config", value=None ) |
|
|
|
inputs = [dreambooth_dropdown, motion_module_dropdown, prompt_textbox, negative_prompt_textbox, width_slider, height_slider, seed_textbox] |
|
outputs = [result_video, json_config] |
|
|
|
generate_button.click( fn=controller.magictime, inputs=inputs, outputs=outputs ) |
|
|
|
gr.Examples( fn=controller.magictime, examples=examples, inputs=inputs, outputs=outputs, cache_examples=True ) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
demo = ui() |
|
demo.queue(max_size=20) |
|
demo.launch() |