File size: 11,259 Bytes
4a8ac8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad9f62
 
 
 
 
4a8ac8b
 
 
1ad9f62
4a8ac8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9eb248
4a8ac8b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
from huggingface_hub import InferenceClient
import json
import re
import uuid
from PIL import Image
from bs4 import BeautifulSoup
import requests
import random
from gradio_client import Client, file

def generate_caption_instructblip(image_path, question):
    client = Client("hysts/image-captioning-with-blip")
    return client.predict(file(image_path), f"Answer this Question in detail {question}", api_name="/caption")

def extract_text_from_webpage(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, 'html.parser')
    # Remove unwanted tags
    for tag in soup(["script", "style", "header", "footer", "nav", "form", "svg"]):
        tag.extract()
    return soup.get_text(strip=True)

# Perform a Google search and return the results
def search(query):
    """Performs a Google search and returns the results."""
    term=query
    print(f"Running web search for query: {term}")
    start = 0
    all_results = []
    # Limit the number of characters from each webpage to stay under the token limit
    max_chars_per_page = 8000  # Adjust this value based on your token limit and average webpage length
    
    with requests.Session() as session: 
        resp = session.get(  
            url="https://www.google.com/search",
            headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, 
                params={
                    "q": term,
                    "num": 3,
                    "udm": 14,
                },
                timeout=5,
                verify=None,
        )
        resp.raise_for_status()
        soup = BeautifulSoup(resp.text, "html.parser")
        result_block = soup.find_all("div", attrs={"class": "g"})
        for result in result_block:
            link = result.find("a", href=True)
            link = link["href"]
            try:
                webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5,verify=False) 
                webpage.raise_for_status()
                visible_text = extract_text_from_webpage(webpage.text)
                        # Truncate text if it's too long
                if len(visible_text) > max_chars_per_page:
                    visible_text = visible_text[:max_chars_per_page]
                all_results.append({"link": link, "text": visible_text})
            except requests.exceptions.RequestException as e:
                all_results.append({"link": link, "text": None})
    return all_results


client = InferenceClient("google/gemma-1.1-7b-it")

def respond(
    message, history
):
    messages = []
    vqa=""
    if message["files"]:
        try:
            for image in message["files"]: 
                vqa += "[CAPTION of IMAGE]  "
                gr.Info("Analyzing image")
                vqa += generate_caption_instructblip(image, message["text"])
                print(vqa)
        except:
            vqa = ""
            
            
        
    functions_metadata = [
        {
            "type": "function",
            "function": {
                "name": "web_search",
                "description": "Search query on google and find latest information.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "query": {
                            "type": "string",
                            "description": "web search query",
                        }
                    },
                    "required": ["query"],
                },
            },
        },
        {
            "type": "function",
            "function": {
                "name": "general_query",
                "description": "Reply general query of USER through LLM like you, it does'nt know latest information. But very helpful in general query. Its very powerful LLM. It knows many thing just like you except latest things, or thing that you don't know.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "prompt": {
                            "type": "string",
                            "description": "A detailed prompt so that an LLm can understand better, what user wants.",
                        }
                    },
                    "required": ["prompt"],
                },
            },
        },
        {
            "type": "function",
            "function": {
                "name": "image_generation",
                "description": "Generate image for user.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "query": {
                            "type": "string",
                            "description": "image generation prompt in detail.",
                        },
                        "number_of_image": {
                            "type": "integer",
                            "description": "number of images to generate.",
                        }
                    },
                    "required": ["query"],
                },
            },
        },
        {
            "type": "function",
            "function": {
                "name": "image_qna",
                "description": "Answer question asked by user related to image.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "query": {
                            "type": "string",
                            "description": "Question by user",
                        }
                    },
                    "required": ["query"],
                },
            },
        }
    ]

    message_text = message["text"]

    client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
    client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
    generate_kwargs = dict( max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False )

    messages.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text} {vqa}'})

    response = client.chat_completion( messages, max_tokens=150)
    response = str(response)
    try:
        response = response[int(response.find("{")):int(response.rindex("</functioncall>"))]
    except:
        print("A error occured")
    response = response.replace("\\n", "")
    response = response.replace("\\'", "'")
    response = response.replace('\\"', '"')
    print(f"\n{response}")
    # Extract JSON content from the response
    try:
        json_data = json.loads(str(response))
        if json_data["name"] == "web_search":
            query = json_data["arguments"]["query"]
            gr.Info("Searching Web")
            web_results = search(query)
            gr.Info("Extracting relevant Info")
            web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
            messages = f"<|im_start|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
            for msg in history:
                messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
                messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
            messages+=f"\n<|im_start|>user\n{message_text} {vqa}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
            stream = client_mixtral.text_generation(messages, **generate_kwargs)
            output = ""
            for response in stream:
                if not response.token.text == "<|im_end|>":
                    output += response.token.text
                    yield output
        elif json_data["name"] == "image_generation":
            query = json_data["arguments"]["query"]
            gr.Info("Generating Image, Please wait...")
            seed = random.randint(1, 99999)
            image = f"![](https://image.pollinations.ai/prompt/{query}?{seed})"
            yield image
            gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
        else:
            messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
            for msg in history:
                messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
                messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
            messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
            stream = client_llama.text_generation(messages, **generate_kwargs)
            output = ""
            for response in stream:
                if not response.token.text == "<|eot_id|>":
                    output += response.token.text
                    yield output
    except:
        messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
        for msg in history:
            messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
            messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
        messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
        stream = client_llama.text_generation(messages, **generate_kwargs)
        output = ""
        for response in stream:
            if not response.token.text == "<|eot_id|>":
                output += response.token.text
                yield output

demo = gr.ChatInterface(fn=respond, title="OpenGPT 4o mini", textbox=gr.MultimodalTextbox(), multimodal=True)

demo.launch()