from typing import Optional # import spaces import gradio as gr import numpy as np import torch from PIL import Image import io import base64, os from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img import torch from PIL import Image # yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt') # caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence") from ultralytics import YOLO yolo_model = YOLO('weights/icon_detect/best.pt').to('cuda') from transformers import AutoProcessor, AutoModelForCausalLM processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("weights/icon_caption_florence", torch_dtype=torch.float16, trust_remote_code=True).to('cuda') caption_model_processor = {'processor': processor, 'model': model} print('finish loading model!!!') MARKDOWN = """ # OmniParser for Pure Vision Based General GUI Agent 🔥
OmniParser is a screen parsing tool to convert general GUI screen to structured elements. 📢 [[Project Page](https://microsoft.github.io/OmniParser/)] [[Blog Post](https://www.microsoft.com/en-us/research/articles/omniparser-for-pure-vision-based-gui-agent/)] [[Models](https://huggingface.co/microsoft/OmniParser)] """ # DEVICE = torch.device('cuda') # @spaces.GPU @torch.inference_mode() # @torch.autocast(device_type="cuda", dtype=torch.bfloat16) # @spaces.GPU(duration=65) def process( image_input, box_threshold, iou_threshold ) -> Optional[Image.Image]: image_save_path = 'imgs/saved_image_demo.png' image_input.save(image_save_path) # import pdb; pdb.set_trace() image = Image.open(image_save_path) box_overlay_ratio = image.size[0] / 3200 draw_bbox_config = { 'text_scale': 0.8 * box_overlay_ratio, 'text_thickness': max(int(2 * box_overlay_ratio), 1), 'text_padding': max(int(3 * box_overlay_ratio), 1), 'thickness': max(int(3 * box_overlay_ratio), 1), } ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=True) text, ocr_bbox = ocr_bbox_rslt # print('prompt:', prompt) dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold) image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) print('finish processing') parsed_content_list = '\n'.join(parsed_content_list) return image, str(parsed_content_list) with gr.Blocks() as demo: gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(): image_input_component = gr.Image( type='pil', label='Upload image') # set the threshold for removing the bounding boxes with low confidence, default is 0.05 box_threshold_component = gr.Slider( label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05) # set the threshold for removing the bounding boxes with large overlap, default is 0.1 iou_threshold_component = gr.Slider( label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1) submit_button_component = gr.Button( value='Submit', variant='primary') with gr.Column(): image_output_component = gr.Image(type='pil', label='Image Output') text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output') submit_button_component.click( fn=process, inputs=[ image_input_component, box_threshold_component, iou_threshold_component ], outputs=[image_output_component, text_output_component] ) # demo.launch(debug=False, show_error=True, share=True) demo.launch(share=True, server_port=7861, server_name='0.0.0.0') # demo.queue().launch(share=False)