File size: 7,006 Bytes
e352103
ad382c8
e352103
 
 
 
 
 
0a651e1
e352103
 
0a1a1a0
e352103
ad382c8
e352103
0a651e1
ad382c8
e352103
9ad1205
e352103
b926faa
e352103
 
 
 
 
 
 
 
 
 
 
 
0029ec4
 
 
 
 
 
 
 
 
b926faa
 
 
0029ec4
 
 
 
 
 
 
 
 
 
e352103
 
 
 
 
 
0029ec4
e352103
0029ec4
 
 
 
 
e352103
 
0029ec4
 
 
e352103
 
 
3ada93a
ad382c8
5af142a
e352103
74ee333
e352103
b926faa
 
e352103
 
 
7660e3c
ad382c8
3ada93a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad382c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ada93a
ad382c8
e352103
b926faa
e352103
 
 
109d07a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")

model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct", 
        torch_dtype=torch.bfloat16,
        #_attn_implementation="flash_attention_2"
        ).to("cuda")

@spaces.GPU
def model_inference(
    images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
    repetition_penalty, top_p
):
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")

    if text == "" and images:
        gr.Error("Please input a text query along the image(s).")

    if isinstance(images, Image.Image):
        images = [images]


    resulting_messages = [
                {
                    "role": "user",
                    "content": [{"type": "image"}] + [
                        {"type": "text", "text": text}
                    ]
                }
            ]

    if assistant_prefix:
      text = f"{assistant_prefix} {text}"


    prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[images], return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}

    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,

    }

    assert decoding_strategy in [
        "Greedy",
        "Top P Sampling",
    ]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p

    generation_args.update(inputs)

    # Generate
    generated_ids = model.generate(**generation_args)

    generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
    return generated_texts[0]


with gr.Blocks(fill_height=True) as demo:
    gr.Markdown("## SmolVLM: Small yet Mighty 💫")
    gr.Markdown("Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples.")
    with gr.Column():
        image_input = gr.Image(label="Upload your Image", type="pil", scale=1)
        query_input = gr.Textbox(label="Prompt")
        assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")

        submit_btn = gr.Button("Submit")
        output = gr.Textbox(label="Output")

        
        
        with gr.Accordion(label="Examples and Advanced Generation Parameters", open=False):
            examples=[
                    ["example_images/rococo.jpg", "What art era is this?", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/examples_wat_arun.jpg", "Give me travel tips for the area around this monument.", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/examples_invoice.png", "What is the due date and the invoice date?", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/s2w_example.png", "What is this UI about?", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/examples_weather_events.png", "Where do the severe droughts happen according to this diagram?", None, "Greedy", 0.4, 512, 1.2, 0.8],
            ]
            gr.Examples(
                        examples = examples,
                        inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature,
                                                              max_new_tokens, repetition_penalty, top_p],
                        outputs=output,
                        fn=model_inference, cache_examples=False
                    )
            # Hyper-parameters for generation
            max_new_tokens = gr.Slider(
                minimum=8,
                maximum=1024,
                value=512,
                step=1,
                interactive=True,
                label="Maximum number of new tokens to generate",
            )
            repetition_penalty = gr.Slider(
                minimum=0.01,
                maximum=5.0,
                value=1.2,
                step=0.01,
                interactive=True,
                label="Repetition penalty",
                info="1.0 is equivalent to no penalty",
            )
            temperature = gr.Slider(
                minimum=0.0,
                maximum=5.0,
                value=0.4,
                step=0.1,
                interactive=True,
                label="Sampling temperature",
                info="Higher values will produce more diverse outputs.",
            )
            top_p = gr.Slider(
                minimum=0.01,
                maximum=0.99,
                value=0.8,
                step=0.01,
                interactive=True,
                label="Top P",
                info="Higher values is equivalent to sampling more low-probability tokens.",
            )
            decoding_strategy = gr.Radio(
                [
                    "Greedy",
                    "Top P Sampling",
                ],
                value="Greedy",
                label="Decoding strategy",
                interactive=True,
                info="Higher values is equivalent to sampling more low-probability tokens.",
            )
            decoding_strategy.change(
                fn=lambda selection: gr.Slider(
                    visible=(
                        selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                    )
                ),
                inputs=decoding_strategy,
                outputs=temperature,
            )

            decoding_strategy.change(
                fn=lambda selection: gr.Slider(
                    visible=(
                        selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                    )
                ),
                inputs=decoding_strategy,
                outputs=repetition_penalty,
            )
            decoding_strategy.change(
                fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
                inputs=decoding_strategy,
                outputs=top_p,
            )
        
        

        submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
                                                      max_new_tokens, repetition_penalty, top_p], outputs=output)


demo.launch(debug=True)