File size: 7,504 Bytes
e352103
 
 
 
 
 
 
 
0a651e1
e352103
 
0a1a1a0
e352103
0a1a1a0
e352103
0a651e1
 
e352103
9ad1205
e352103
b926faa
e352103
 
 
 
 
 
 
 
 
 
 
 
0029ec4
 
 
 
 
 
 
 
 
b926faa
 
 
0029ec4
 
 
 
 
 
 
 
 
 
e352103
 
 
 
 
 
0029ec4
e352103
0029ec4
 
 
 
 
e352103
 
0029ec4
 
 
e352103
 
 
 
5af142a
 
e352103
74ee333
e352103
b926faa
 
e352103
 
 
 
b926faa
4d3b5fa
 
 
 
 
 
 
 
 
e352103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b926faa
e352103
 
 
 
 
b926faa
e352103
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")

model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceTB/SmolVLM-Instruct", 
        torch_dtype=torch.bfloat16,
        #_attn_implementation="flash_attention_2"
                                                        ).to("cuda")

@spaces.GPU
def model_inference(
    images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
    repetition_penalty, top_p
):
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")

    if text == "" and images:
        gr.Error("Please input a text query along the image(s).")

    if isinstance(images, Image.Image):
        images = [images]


    resulting_messages = [
                {
                    "role": "user",
                    "content": [{"type": "image"}] + [
                        {"type": "text", "text": text}
                    ]
                }
            ]

    if assistant_prefix:
      text = f"{assistant_prefix} {text}"


    prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[images], return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}

    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,

    }

    assert decoding_strategy in [
        "Greedy",
        "Top P Sampling",
    ]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p

    generation_args.update(inputs)

    # Generate
    generated_ids = model.generate(**generation_args)

    generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
    return generated_texts[0]


with gr.Blocks(fill_height=True) as demo:
    gr.Markdown("## SmolVLM")
    gr.Markdown("Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples.")
    with gr.Column():
        image_input = gr.Image(label="Upload your Image", type="pil", scale=1)
        query_input = gr.Textbox(label="Prompt")
        assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")

        submit_btn = gr.Button("Submit")
        output = gr.Textbox(label="Output")

    with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"):
        examples=[
                    ["example_images/mmmu_example.jpeg", "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?", "Let's think step by step.", "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/rococo_1.jpg", "What art era is this?", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/paper_with_text.png", "Read what's written on the paper", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/dragons_playing.png","What's unusual about this image?",None,  "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/example_images_ai2d_example_2.jpeg", "What happens to fish if pelicans increase?", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/dummy_pdf.png", "How much percent is the order status?", None, "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.",None,  "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/s2w_example.png",  "What is this UI about?", None,"Greedy", 0.4, 512, 1.2, 0.8]]

        # Hyper-parameters for generation
        max_new_tokens = gr.Slider(
              minimum=8,
              maximum=1024,
              value=512,
              step=1,
              interactive=True,
              label="Maximum number of new tokens to generate",
          )
        repetition_penalty = gr.Slider(
              minimum=0.01,
              maximum=5.0,
              value=1.2,
              step=0.01,
              interactive=True,
              label="Repetition penalty",
              info="1.0 is equivalent to no penalty",
          )
        temperature = gr.Slider(
              minimum=0.0,
              maximum=5.0,
              value=0.4,
              step=0.1,
              interactive=True,
              label="Sampling temperature",
              info="Higher values will produce more diverse outputs.",
          )
        top_p = gr.Slider(
              minimum=0.01,
              maximum=0.99,
              value=0.8,
              step=0.01,
              interactive=True,
              label="Top P",
              info="Higher values is equivalent to sampling more low-probability tokens.",
          )
        decoding_strategy = gr.Radio(
              [
                  "Greedy",
                  "Top P Sampling",
              ],
              value="Greedy",
              label="Decoding strategy",
              interactive=True,
              info="Higher values is equivalent to sampling more low-probability tokens.",
          )
        decoding_strategy.change(
              fn=lambda selection: gr.Slider(
                  visible=(
                      selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                  )
              ),
              inputs=decoding_strategy,
              outputs=temperature,
          )

        decoding_strategy.change(
              fn=lambda selection: gr.Slider(
                  visible=(
                      selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                  )
              ),
              inputs=decoding_strategy,
              outputs=repetition_penalty,
          )
        decoding_strategy.change(
              fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
              inputs=decoding_strategy,
              outputs=top_p,
          )
        gr.Examples(
                        examples = examples,
                        inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature,
                                                              max_new_tokens, repetition_penalty, top_p],
                        outputs=output,
                        fn=model_inference
                    )

        submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
                                                      max_new_tokens, repetition_penalty, top_p], outputs=output)


demo.launch(debug=True)