File size: 17,454 Bytes
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
from typing import *
import torch
import torch.nn as nn
from . import BACKEND, DEBUG
SparseTensorData = None # Lazy import


__all__ = [
    'SparseTensor',
    'sparse_batch_broadcast',
    'sparse_batch_op',
    'sparse_cat',
    'sparse_unbind',
]


class SparseTensor:
    """
    Sparse tensor with support for both torchsparse and spconv backends.
    
    Parameters:
    - feats (torch.Tensor): Features of the sparse tensor.
    - coords (torch.Tensor): Coordinates of the sparse tensor.
    - shape (torch.Size): Shape of the sparse tensor.
    - layout (List[slice]): Layout of the sparse tensor for each batch
    - data (SparseTensorData): Sparse tensor data used for convolusion

    NOTE:
    - Data corresponding to a same batch should be contiguous.
    - Coords should be in [0, 1023]
    """
    @overload
    def __init__(self, feats: torch.Tensor, coords: torch.Tensor, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...

    @overload
    def __init__(self, data, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...

    def __init__(self, *args, **kwargs):
        # Lazy import of sparse tensor backend
        global SparseTensorData
        if SparseTensorData is None:
            import importlib
            if BACKEND == 'torchsparse':
                SparseTensorData = importlib.import_module('torchsparse').SparseTensor
            elif BACKEND == 'spconv':
                SparseTensorData = importlib.import_module('spconv.pytorch').SparseConvTensor
                
        method_id = 0
        if len(args) != 0:
            method_id = 0 if isinstance(args[0], torch.Tensor) else 1
        else:
            method_id = 1 if 'data' in kwargs else 0

        if method_id == 0:
            feats, coords, shape, layout = args + (None,) * (4 - len(args))
            if 'feats' in kwargs:
                feats = kwargs['feats']
                del kwargs['feats']
            if 'coords' in kwargs:
                coords = kwargs['coords']
                del kwargs['coords']
            if 'shape' in kwargs:
                shape = kwargs['shape']
                del kwargs['shape']
            if 'layout' in kwargs:
                layout = kwargs['layout']
                del kwargs['layout']

            if shape is None:
                shape = self.__cal_shape(feats, coords)
            if layout is None:
                layout = self.__cal_layout(coords, shape[0])
            if BACKEND == 'torchsparse':
                self.data = SparseTensorData(feats, coords, **kwargs)
            elif BACKEND == 'spconv':
                spatial_shape = list(coords.max(0)[0] + 1)[1:]
                self.data = SparseTensorData(feats.reshape(feats.shape[0], -1), coords, spatial_shape, shape[0], **kwargs)
                self.data._features = feats
        elif method_id == 1:
            data, shape, layout = args + (None,) * (3 - len(args))
            if 'data' in kwargs:
                data = kwargs['data']
                del kwargs['data']
            if 'shape' in kwargs:
                shape = kwargs['shape']
                del kwargs['shape']
            if 'layout' in kwargs:
                layout = kwargs['layout']
                del kwargs['layout']

            self.data = data
            if shape is None:
                shape = self.__cal_shape(self.feats, self.coords)
            if layout is None:
                layout = self.__cal_layout(self.coords, shape[0])

        self._shape = shape
        self._layout = layout
        self._scale = kwargs.get('scale', (1, 1, 1))
        self._spatial_cache = kwargs.get('spatial_cache', {})

        if DEBUG:
            try:
                assert self.feats.shape[0] == self.coords.shape[0], f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}"
                assert self.shape == self.__cal_shape(self.feats, self.coords), f"Invalid shape: {self.shape}"
                assert self.layout == self.__cal_layout(self.coords, self.shape[0]), f"Invalid layout: {self.layout}"
                for i in range(self.shape[0]):
                    assert torch.all(self.coords[self.layout[i], 0] == i), f"The data of batch {i} is not contiguous"
            except Exception as e:
                print('Debugging information:')
                print(f"- Shape: {self.shape}")
                print(f"- Layout: {self.layout}")
                print(f"- Scale: {self._scale}")
                print(f"- Coords: {self.coords}")
                raise e
        
    def __cal_shape(self, feats, coords):
        shape = []
        shape.append(coords[:, 0].max().item() + 1)
        shape.extend([*feats.shape[1:]])
        return torch.Size(shape)
    
    def __cal_layout(self, coords, batch_size):
        seq_len = torch.bincount(coords[:, 0], minlength=batch_size)
        offset = torch.cumsum(seq_len, dim=0) 
        layout = [slice((offset[i] - seq_len[i]).item(), offset[i].item()) for i in range(batch_size)]
        return layout
    
    @property
    def shape(self) -> torch.Size:
        return self._shape
    
    def dim(self) -> int:
        return len(self.shape)
    
    @property
    def layout(self) -> List[slice]:
        return self._layout

    @property
    def feats(self) -> torch.Tensor:
        if BACKEND == 'torchsparse':
            return self.data.F
        elif BACKEND == 'spconv':
            return self.data.features
    
    @feats.setter
    def feats(self, value: torch.Tensor):
        if BACKEND == 'torchsparse':
            self.data.F = value
        elif BACKEND == 'spconv':
            self.data.features = value

    @property
    def coords(self) -> torch.Tensor:
        if BACKEND == 'torchsparse':
            return self.data.C
        elif BACKEND == 'spconv':
            return self.data.indices
        
    @coords.setter
    def coords(self, value: torch.Tensor):
        if BACKEND == 'torchsparse':
            self.data.C = value
        elif BACKEND == 'spconv':
            self.data.indices = value

    @property
    def dtype(self):
        return self.feats.dtype

    @property
    def device(self):
        return self.feats.device

    @overload
    def to(self, dtype: torch.dtype) -> 'SparseTensor': ...

    @overload
    def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None) -> 'SparseTensor': ...

    def to(self, *args, **kwargs) -> 'SparseTensor':
        device = None
        dtype = None
        if len(args) == 2:
            device, dtype = args
        elif len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype = args[0]
            else:
                device = args[0]
        if 'dtype' in kwargs:
            assert dtype is None, "to() received multiple values for argument 'dtype'"
            dtype = kwargs['dtype']
        if 'device' in kwargs:
            assert device is None, "to() received multiple values for argument 'device'"
            device = kwargs['device']
        
        new_feats = self.feats.to(device=device, dtype=dtype)
        new_coords = self.coords.to(device=device)
        return self.replace(new_feats, new_coords)

    def type(self, dtype):
        new_feats = self.feats.type(dtype)
        return self.replace(new_feats)

    def cpu(self) -> 'SparseTensor':
        new_feats = self.feats.cpu()
        new_coords = self.coords.cpu()
        return self.replace(new_feats, new_coords)
    
    def cuda(self) -> 'SparseTensor':
        new_feats = self.feats.cuda()
        new_coords = self.coords.cuda()
        return self.replace(new_feats, new_coords)

    def half(self) -> 'SparseTensor':
        new_feats = self.feats.half()
        return self.replace(new_feats)
    
    def float(self) -> 'SparseTensor':
        new_feats = self.feats.float()
        return self.replace(new_feats)
    
    def detach(self) -> 'SparseTensor':
        new_coords = self.coords.detach()
        new_feats = self.feats.detach()
        return self.replace(new_feats, new_coords)

    def dense(self) -> torch.Tensor:
        if BACKEND == 'torchsparse':
            return self.data.dense()
        elif BACKEND == 'spconv':
            return self.data.dense()

    def reshape(self, *shape) -> 'SparseTensor':
        new_feats = self.feats.reshape(self.feats.shape[0], *shape)
        return self.replace(new_feats)
    
    def unbind(self, dim: int) -> List['SparseTensor']:
        return sparse_unbind(self, dim)

    def replace(self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None) -> 'SparseTensor':
        new_shape = [self.shape[0]]
        new_shape.extend(feats.shape[1:])
        if BACKEND == 'torchsparse':
            new_data = SparseTensorData(
                feats=feats,
                coords=self.data.coords if coords is None else coords,
                stride=self.data.stride,
                spatial_range=self.data.spatial_range,
            )
            new_data._caches = self.data._caches
        elif BACKEND == 'spconv':
            new_data = SparseTensorData(
                self.data.features.reshape(self.data.features.shape[0], -1),
                self.data.indices,
                self.data.spatial_shape,
                self.data.batch_size,
                self.data.grid,
                self.data.voxel_num,
                self.data.indice_dict
            )
            new_data._features = feats
            new_data.benchmark = self.data.benchmark
            new_data.benchmark_record = self.data.benchmark_record
            new_data.thrust_allocator = self.data.thrust_allocator
            new_data._timer = self.data._timer
            new_data.force_algo = self.data.force_algo
            new_data.int8_scale = self.data.int8_scale
            if coords is not None:
                new_data.indices = coords
        new_tensor = SparseTensor(new_data, shape=torch.Size(new_shape), layout=self.layout, scale=self._scale, spatial_cache=self._spatial_cache)
        return new_tensor

    @staticmethod
    def full(aabb, dim, value, dtype=torch.float32, device=None) -> 'SparseTensor':
        N, C = dim
        x = torch.arange(aabb[0], aabb[3] + 1)
        y = torch.arange(aabb[1], aabb[4] + 1)
        z = torch.arange(aabb[2], aabb[5] + 1)
        coords = torch.stack(torch.meshgrid(x, y, z, indexing='ij'), dim=-1).reshape(-1, 3)
        coords = torch.cat([
            torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1),
            coords.repeat(N, 1),
        ], dim=1).to(dtype=torch.int32, device=device)
        feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device)
        return SparseTensor(feats=feats, coords=coords)

    def __merge_sparse_cache(self, other: 'SparseTensor') -> dict:
        new_cache = {}
        for k in set(list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())):
            if k in self._spatial_cache:
                new_cache[k] = self._spatial_cache[k]
            if k in other._spatial_cache:
                if k not in new_cache:
                    new_cache[k] = other._spatial_cache[k]
                else:
                    new_cache[k].update(other._spatial_cache[k])
        return new_cache

    def __neg__(self) -> 'SparseTensor':
        return self.replace(-self.feats)
    
    def __elemwise__(self, other: Union[torch.Tensor, 'SparseTensor'], op: callable) -> 'SparseTensor':
        if isinstance(other, torch.Tensor):
            try:
                other = torch.broadcast_to(other, self.shape)
                other = sparse_batch_broadcast(self, other)
            except:
                pass
        if isinstance(other, SparseTensor):
            other = other.feats
        new_feats = op(self.feats, other)
        new_tensor = self.replace(new_feats)
        if isinstance(other, SparseTensor):
            new_tensor._spatial_cache = self.__merge_sparse_cache(other)
        return new_tensor

    def __add__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
        return self.__elemwise__(other, torch.add)

    def __radd__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
        return self.__elemwise__(other, torch.add)
    
    def __sub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
        return self.__elemwise__(other, torch.sub)
    
    def __rsub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
        return self.__elemwise__(other, lambda x, y: torch.sub(y, x))

    def __mul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
        return self.__elemwise__(other, torch.mul)

    def __rmul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
        return self.__elemwise__(other, torch.mul)

    def __truediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
        return self.__elemwise__(other, torch.div)

    def __rtruediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
        return self.__elemwise__(other, lambda x, y: torch.div(y, x))

    def __getitem__(self, idx):
        if isinstance(idx, int):
            idx = [idx]
        elif isinstance(idx, slice):
            idx = range(*idx.indices(self.shape[0]))
        elif isinstance(idx, torch.Tensor):
            if idx.dtype == torch.bool:
                assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}"
                idx = idx.nonzero().squeeze(1)
            elif idx.dtype in [torch.int32, torch.int64]:
                assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
            else:
                raise ValueError(f"Unknown index type: {idx.dtype}")
        else:
            raise ValueError(f"Unknown index type: {type(idx)}")
        
        coords = []
        feats = []
        for new_idx, old_idx in enumerate(idx):
            coords.append(self.coords[self.layout[old_idx]].clone())
            coords[-1][:, 0] = new_idx
            feats.append(self.feats[self.layout[old_idx]])
        coords = torch.cat(coords, dim=0).contiguous()
        feats = torch.cat(feats, dim=0).contiguous()
        return SparseTensor(feats=feats, coords=coords)

    def register_spatial_cache(self, key, value) -> None:
        """
        Register a spatial cache.
        The spatial cache can be any thing you want to cache.
        The registery and retrieval of the cache is based on current scale.
        """
        scale_key = str(self._scale)
        if scale_key not in self._spatial_cache:
            self._spatial_cache[scale_key] = {}
        self._spatial_cache[scale_key][key] = value

    def get_spatial_cache(self, key=None):
        """
        Get a spatial cache.
        """
        scale_key = str(self._scale)
        cur_scale_cache = self._spatial_cache.get(scale_key, {})
        if key is None:
            return cur_scale_cache
        return cur_scale_cache.get(key, None)


def sparse_batch_broadcast(input: SparseTensor, other: torch.Tensor) -> torch.Tensor:
    """
    Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
    
    Args:
        input (torch.Tensor): 1D tensor to broadcast.
        target (SparseTensor): Sparse tensor to broadcast to.
        op (callable): Operation to perform after broadcasting. Defaults to torch.add.
    """
    coords, feats = input.coords, input.feats
    broadcasted = torch.zeros_like(feats)
    for k in range(input.shape[0]):
        broadcasted[input.layout[k]] = other[k]
    return broadcasted


def sparse_batch_op(input: SparseTensor, other: torch.Tensor, op: callable = torch.add) -> SparseTensor:
    """
    Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
    
    Args:
        input (torch.Tensor): 1D tensor to broadcast.
        target (SparseTensor): Sparse tensor to broadcast to.
        op (callable): Operation to perform after broadcasting. Defaults to torch.add.
    """
    return input.replace(op(input.feats, sparse_batch_broadcast(input, other)))


def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
    """
    Concatenate a list of sparse tensors.
    
    Args:
        inputs (List[SparseTensor]): List of sparse tensors to concatenate.
    """
    if dim == 0:
        start = 0
        coords = []
        for input in inputs:
            coords.append(input.coords.clone())
            coords[-1][:, 0] += start
            start += input.shape[0]
        coords = torch.cat(coords, dim=0)
        feats = torch.cat([input.feats for input in inputs], dim=0)
        output = SparseTensor(
            coords=coords,
            feats=feats,
        )
    else:
        feats = torch.cat([input.feats for input in inputs], dim=dim)
        output = inputs[0].replace(feats)

    return output


def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]:
    """
    Unbind a sparse tensor along a dimension.
    
    Args:
        input (SparseTensor): Sparse tensor to unbind.
        dim (int): Dimension to unbind.
    """
    if dim == 0:
        return [input[i] for i in range(input.shape[0])]
    else:
        feats = input.feats.unbind(dim)
        return [input.replace(f) for f in feats]