|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from ..modules.utils import convert_module_to_f16, convert_module_to_f32 |
|
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock |
|
from ..modules.spatial import patchify, unpatchify |
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
|
|
Args: |
|
t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
dim: the dimension of the output. |
|
max_period: controls the minimum frequency of the embeddings. |
|
|
|
Returns: |
|
an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half |
|
).to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
class SparseStructureFlowModel(nn.Module): |
|
def __init__( |
|
self, |
|
resolution: int, |
|
in_channels: int, |
|
model_channels: int, |
|
cond_channels: int, |
|
out_channels: int, |
|
num_blocks: int, |
|
num_heads: Optional[int] = None, |
|
num_head_channels: Optional[int] = 64, |
|
mlp_ratio: float = 4, |
|
patch_size: int = 2, |
|
pe_mode: Literal["ape", "rope"] = "ape", |
|
use_fp16: bool = False, |
|
use_checkpoint: bool = False, |
|
share_mod: bool = False, |
|
qk_rms_norm: bool = False, |
|
qk_rms_norm_cross: bool = False, |
|
): |
|
super().__init__() |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.cond_channels = cond_channels |
|
self.out_channels = out_channels |
|
self.num_blocks = num_blocks |
|
self.num_heads = num_heads or model_channels // num_head_channels |
|
self.mlp_ratio = mlp_ratio |
|
self.patch_size = patch_size |
|
self.pe_mode = pe_mode |
|
self.use_fp16 = use_fp16 |
|
self.use_checkpoint = use_checkpoint |
|
self.share_mod = share_mod |
|
self.qk_rms_norm = qk_rms_norm |
|
self.qk_rms_norm_cross = qk_rms_norm_cross |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
|
|
self.t_embedder = TimestepEmbedder(model_channels) |
|
if share_mod: |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(model_channels, 6 * model_channels, bias=True) |
|
) |
|
|
|
if pe_mode == "ape": |
|
pos_embedder = AbsolutePositionEmbedder(model_channels, 3) |
|
coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij') |
|
coords = torch.stack(coords, dim=-1).reshape(-1, 3) |
|
pos_emb = pos_embedder(coords) |
|
self.register_buffer("pos_emb", pos_emb) |
|
|
|
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels) |
|
|
|
self.blocks = nn.ModuleList([ |
|
ModulatedTransformerCrossBlock( |
|
model_channels, |
|
cond_channels, |
|
num_heads=self.num_heads, |
|
mlp_ratio=self.mlp_ratio, |
|
attn_mode='full', |
|
use_checkpoint=self.use_checkpoint, |
|
use_rope=(pe_mode == "rope"), |
|
share_mod=share_mod, |
|
qk_rms_norm=self.qk_rms_norm, |
|
qk_rms_norm_cross=self.qk_rms_norm_cross, |
|
) |
|
for _ in range(num_blocks) |
|
]) |
|
|
|
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3) |
|
|
|
self.initialize_weights() |
|
if use_fp16: |
|
self.convert_to_fp16() |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
Return the device of the model. |
|
""" |
|
return next(self.parameters()).device |
|
|
|
def convert_to_fp16(self) -> None: |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
self.blocks.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self) -> None: |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
self.blocks.apply(convert_module_to_f32) |
|
|
|
def initialize_weights(self) -> None: |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
self.apply(_basic_init) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
|
|
|
|
if self.share_mod: |
|
nn.init.constant_(self.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(self.adaLN_modulation[-1].bias, 0) |
|
else: |
|
for block in self.blocks: |
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
|
|
nn.init.constant_(self.out_layer.weight, 0) |
|
nn.init.constant_(self.out_layer.bias, 0) |
|
|
|
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor: |
|
assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \ |
|
f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}" |
|
|
|
h = patchify(x, self.patch_size) |
|
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous() |
|
|
|
h = self.input_layer(h) |
|
h = h + self.pos_emb[None] |
|
t_emb = self.t_embedder(t) |
|
if self.share_mod: |
|
t_emb = self.adaLN_modulation(t_emb) |
|
t_emb = t_emb.type(self.dtype) |
|
h = h.type(self.dtype) |
|
cond = cond.type(self.dtype) |
|
for block in self.blocks: |
|
h = block(h, t_emb, cond) |
|
h = h.type(x.dtype) |
|
h = F.layer_norm(h, h.shape[-1:]) |
|
h = self.out_layer(h) |
|
|
|
h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3) |
|
h = unpatchify(h, self.patch_size).contiguous() |
|
|
|
return h |
|
|