|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 |
|
from ..modules.transformer import AbsolutePositionEmbedder |
|
from ..modules.norm import LayerNorm32 |
|
from ..modules import sparse as sp |
|
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock |
|
from .sparse_structure_flow import TimestepEmbedder |
|
|
|
|
|
class SparseResBlock3d(nn.Module): |
|
def __init__( |
|
self, |
|
channels: int, |
|
emb_channels: int, |
|
out_channels: Optional[int] = None, |
|
downsample: bool = False, |
|
upsample: bool = False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.out_channels = out_channels or channels |
|
self.downsample = downsample |
|
self.upsample = upsample |
|
|
|
assert not (downsample and upsample), "Cannot downsample and upsample at the same time" |
|
|
|
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6) |
|
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6) |
|
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3) |
|
self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3)) |
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(emb_channels, 2 * self.out_channels, bias=True), |
|
) |
|
self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity() |
|
self.updown = None |
|
if self.downsample: |
|
self.updown = sp.SparseDownsample(2) |
|
elif self.upsample: |
|
self.updown = sp.SparseUpsample(2) |
|
|
|
def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor: |
|
if self.updown is not None: |
|
x = self.updown(x) |
|
return x |
|
|
|
def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor: |
|
emb_out = self.emb_layers(emb).type(x.dtype) |
|
scale, shift = torch.chunk(emb_out, 2, dim=1) |
|
|
|
x = self._updown(x) |
|
h = x.replace(self.norm1(x.feats)) |
|
h = h.replace(F.silu(h.feats)) |
|
h = self.conv1(h) |
|
h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift |
|
h = h.replace(F.silu(h.feats)) |
|
h = self.conv2(h) |
|
h = h + self.skip_connection(x) |
|
|
|
return h |
|
|
|
|
|
class SLatFlowModel(nn.Module): |
|
def __init__( |
|
self, |
|
resolution: int, |
|
in_channels: int, |
|
model_channels: int, |
|
cond_channels: int, |
|
out_channels: int, |
|
num_blocks: int, |
|
num_heads: Optional[int] = None, |
|
num_head_channels: Optional[int] = 64, |
|
mlp_ratio: float = 4, |
|
patch_size: int = 2, |
|
num_io_res_blocks: int = 2, |
|
io_block_channels: List[int] = None, |
|
pe_mode: Literal["ape", "rope"] = "ape", |
|
use_fp16: bool = False, |
|
use_checkpoint: bool = False, |
|
use_skip_connection: bool = True, |
|
share_mod: bool = False, |
|
qk_rms_norm: bool = False, |
|
qk_rms_norm_cross: bool = False, |
|
): |
|
super().__init__() |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.cond_channels = cond_channels |
|
self.out_channels = out_channels |
|
self.num_blocks = num_blocks |
|
self.num_heads = num_heads or model_channels // num_head_channels |
|
self.mlp_ratio = mlp_ratio |
|
self.patch_size = patch_size |
|
self.num_io_res_blocks = num_io_res_blocks |
|
self.io_block_channels = io_block_channels |
|
self.pe_mode = pe_mode |
|
self.use_fp16 = use_fp16 |
|
self.use_checkpoint = use_checkpoint |
|
self.use_skip_connection = use_skip_connection |
|
self.share_mod = share_mod |
|
self.qk_rms_norm = qk_rms_norm |
|
self.qk_rms_norm_cross = qk_rms_norm_cross |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
|
|
assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2" |
|
assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages" |
|
|
|
self.t_embedder = TimestepEmbedder(model_channels) |
|
if share_mod: |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(model_channels, 6 * model_channels, bias=True) |
|
) |
|
|
|
if pe_mode == "ape": |
|
self.pos_embedder = AbsolutePositionEmbedder(model_channels) |
|
|
|
self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0]) |
|
self.input_blocks = nn.ModuleList([]) |
|
for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]): |
|
self.input_blocks.extend([ |
|
SparseResBlock3d( |
|
chs, |
|
model_channels, |
|
out_channels=chs, |
|
) |
|
for _ in range(num_io_res_blocks-1) |
|
]) |
|
self.input_blocks.append( |
|
SparseResBlock3d( |
|
chs, |
|
model_channels, |
|
out_channels=next_chs, |
|
downsample=True, |
|
) |
|
) |
|
|
|
self.blocks = nn.ModuleList([ |
|
ModulatedSparseTransformerCrossBlock( |
|
model_channels, |
|
cond_channels, |
|
num_heads=self.num_heads, |
|
mlp_ratio=self.mlp_ratio, |
|
attn_mode='full', |
|
use_checkpoint=self.use_checkpoint, |
|
use_rope=(pe_mode == "rope"), |
|
share_mod=self.share_mod, |
|
qk_rms_norm=self.qk_rms_norm, |
|
qk_rms_norm_cross=self.qk_rms_norm_cross, |
|
) |
|
for _ in range(num_blocks) |
|
]) |
|
|
|
self.out_blocks = nn.ModuleList([]) |
|
for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))): |
|
self.out_blocks.append( |
|
SparseResBlock3d( |
|
prev_chs * 2 if self.use_skip_connection else prev_chs, |
|
model_channels, |
|
out_channels=chs, |
|
upsample=True, |
|
) |
|
) |
|
self.out_blocks.extend([ |
|
SparseResBlock3d( |
|
chs * 2 if self.use_skip_connection else chs, |
|
model_channels, |
|
out_channels=chs, |
|
) |
|
for _ in range(num_io_res_blocks-1) |
|
]) |
|
self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels) |
|
|
|
self.initialize_weights() |
|
if use_fp16: |
|
self.convert_to_fp16() |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
Return the device of the model. |
|
""" |
|
return next(self.parameters()).device |
|
|
|
def convert_to_fp16(self) -> None: |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
self.input_blocks.apply(convert_module_to_f16) |
|
self.blocks.apply(convert_module_to_f16) |
|
self.out_blocks.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self) -> None: |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
self.input_blocks.apply(convert_module_to_f32) |
|
self.blocks.apply(convert_module_to_f32) |
|
self.out_blocks.apply(convert_module_to_f32) |
|
|
|
def initialize_weights(self) -> None: |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
self.apply(_basic_init) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
|
|
|
|
if self.share_mod: |
|
nn.init.constant_(self.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(self.adaLN_modulation[-1].bias, 0) |
|
else: |
|
for block in self.blocks: |
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
|
|
nn.init.constant_(self.out_layer.weight, 0) |
|
nn.init.constant_(self.out_layer.bias, 0) |
|
|
|
def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor) -> sp.SparseTensor: |
|
h = self.input_layer(x).type(self.dtype) |
|
t_emb = self.t_embedder(t) |
|
if self.share_mod: |
|
t_emb = self.adaLN_modulation(t_emb) |
|
t_emb = t_emb.type(self.dtype) |
|
cond = cond.type(self.dtype) |
|
|
|
skips = [] |
|
|
|
for block in self.input_blocks: |
|
h = block(h, t_emb) |
|
skips.append(h.feats) |
|
|
|
if self.pe_mode == "ape": |
|
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype) |
|
for block in self.blocks: |
|
h = block(h, t_emb, cond) |
|
|
|
|
|
for block, skip in zip(self.out_blocks, reversed(skips)): |
|
if self.use_skip_connection: |
|
h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb) |
|
else: |
|
h = block(h, t_emb) |
|
|
|
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) |
|
h = self.out_layer(h.type(x.dtype)) |
|
return h |
|
|