|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
from ..basic import SparseTensor |
|
from ..attention import SparseMultiHeadAttention, SerializeMode |
|
from ...norm import LayerNorm32 |
|
from .blocks import SparseFeedForwardNet |
|
|
|
|
|
class ModulatedSparseTransformerBlock(nn.Module): |
|
""" |
|
Sparse Transformer block (MSA + FFN) with adaptive layer norm conditioning. |
|
""" |
|
def __init__( |
|
self, |
|
channels: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full", |
|
window_size: Optional[int] = None, |
|
shift_sequence: Optional[int] = None, |
|
shift_window: Optional[Tuple[int, int, int]] = None, |
|
serialize_mode: Optional[SerializeMode] = None, |
|
use_checkpoint: bool = False, |
|
use_rope: bool = False, |
|
qk_rms_norm: bool = False, |
|
qkv_bias: bool = True, |
|
share_mod: bool = False, |
|
): |
|
super().__init__() |
|
self.use_checkpoint = use_checkpoint |
|
self.share_mod = share_mod |
|
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) |
|
self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) |
|
self.attn = SparseMultiHeadAttention( |
|
channels, |
|
num_heads=num_heads, |
|
attn_mode=attn_mode, |
|
window_size=window_size, |
|
shift_sequence=shift_sequence, |
|
shift_window=shift_window, |
|
serialize_mode=serialize_mode, |
|
qkv_bias=qkv_bias, |
|
use_rope=use_rope, |
|
qk_rms_norm=qk_rms_norm, |
|
) |
|
self.mlp = SparseFeedForwardNet( |
|
channels, |
|
mlp_ratio=mlp_ratio, |
|
) |
|
if not share_mod: |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(channels, 6 * channels, bias=True) |
|
) |
|
|
|
def _forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor: |
|
if self.share_mod: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1) |
|
else: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1) |
|
h = x.replace(self.norm1(x.feats)) |
|
h = h * (1 + scale_msa) + shift_msa |
|
h = self.attn(h) |
|
h = h * gate_msa |
|
x = x + h |
|
h = x.replace(self.norm2(x.feats)) |
|
h = h * (1 + scale_mlp) + shift_mlp |
|
h = self.mlp(h) |
|
h = h * gate_mlp |
|
x = x + h |
|
return x |
|
|
|
def forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor: |
|
if self.use_checkpoint: |
|
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False) |
|
else: |
|
return self._forward(x, mod) |
|
|
|
|
|
class ModulatedSparseTransformerCrossBlock(nn.Module): |
|
""" |
|
Sparse Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning. |
|
""" |
|
def __init__( |
|
self, |
|
channels: int, |
|
ctx_channels: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full", |
|
window_size: Optional[int] = None, |
|
shift_sequence: Optional[int] = None, |
|
shift_window: Optional[Tuple[int, int, int]] = None, |
|
serialize_mode: Optional[SerializeMode] = None, |
|
use_checkpoint: bool = False, |
|
use_rope: bool = False, |
|
qk_rms_norm: bool = False, |
|
qk_rms_norm_cross: bool = False, |
|
qkv_bias: bool = True, |
|
share_mod: bool = False, |
|
|
|
): |
|
super().__init__() |
|
self.use_checkpoint = use_checkpoint |
|
self.share_mod = share_mod |
|
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) |
|
self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6) |
|
self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6) |
|
self.self_attn = SparseMultiHeadAttention( |
|
channels, |
|
num_heads=num_heads, |
|
type="self", |
|
attn_mode=attn_mode, |
|
window_size=window_size, |
|
shift_sequence=shift_sequence, |
|
shift_window=shift_window, |
|
serialize_mode=serialize_mode, |
|
qkv_bias=qkv_bias, |
|
use_rope=use_rope, |
|
qk_rms_norm=qk_rms_norm, |
|
) |
|
self.cross_attn = SparseMultiHeadAttention( |
|
channels, |
|
ctx_channels=ctx_channels, |
|
num_heads=num_heads, |
|
type="cross", |
|
attn_mode="full", |
|
qkv_bias=qkv_bias, |
|
qk_rms_norm=qk_rms_norm_cross, |
|
) |
|
self.mlp = SparseFeedForwardNet( |
|
channels, |
|
mlp_ratio=mlp_ratio, |
|
) |
|
if not share_mod: |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(channels, 6 * channels, bias=True) |
|
) |
|
|
|
def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor: |
|
if self.share_mod: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1) |
|
else: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1) |
|
h = x.replace(self.norm1(x.feats)) |
|
h = h * (1 + scale_msa) + shift_msa |
|
h = self.self_attn(h) |
|
h = h * gate_msa |
|
x = x + h |
|
h = x.replace(self.norm2(x.feats)) |
|
h = self.cross_attn(h, context) |
|
x = x + h |
|
h = x.replace(self.norm3(x.feats)) |
|
h = h * (1 + scale_mlp) + shift_mlp |
|
h = self.mlp(h) |
|
h = h * gate_mlp |
|
x = x + h |
|
return x |
|
|
|
def forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor: |
|
if self.use_checkpoint: |
|
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False) |
|
else: |
|
return self._forward(x, mod, context) |
|
|