|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from ...modules.sparse import SparseTensor |
|
from easydict import EasyDict as edict |
|
from .utils_cube import * |
|
try: |
|
from .flexicube import FlexiCubes |
|
except: |
|
print("Please install kaolin and diso to use the mesh extractor.") |
|
|
|
|
|
class MeshExtractResult: |
|
def __init__(self, |
|
vertices, |
|
faces, |
|
vertex_attrs=None, |
|
res=64 |
|
): |
|
self.vertices = vertices |
|
self.faces = faces.long() |
|
self.vertex_attrs = vertex_attrs |
|
self.face_normal = self.comput_face_normals(vertices, faces) |
|
self.res = res |
|
self.success = (vertices.shape[0] != 0 and faces.shape[0] != 0) |
|
|
|
|
|
self.tsdf_v = None |
|
self.tsdf_s = None |
|
self.reg_loss = None |
|
|
|
def comput_face_normals(self, verts, faces): |
|
i0 = faces[..., 0].long() |
|
i1 = faces[..., 1].long() |
|
i2 = faces[..., 2].long() |
|
|
|
v0 = verts[i0, :] |
|
v1 = verts[i1, :] |
|
v2 = verts[i2, :] |
|
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) |
|
face_normals = torch.nn.functional.normalize(face_normals, dim=1) |
|
|
|
return face_normals[:, None, :].repeat(1, 3, 1) |
|
|
|
def comput_v_normals(self, verts, faces): |
|
i0 = faces[..., 0].long() |
|
i1 = faces[..., 1].long() |
|
i2 = faces[..., 2].long() |
|
|
|
v0 = verts[i0, :] |
|
v1 = verts[i1, :] |
|
v2 = verts[i2, :] |
|
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) |
|
v_normals = torch.zeros_like(verts) |
|
v_normals.scatter_add_(0, i0[..., None].repeat(1, 3), face_normals) |
|
v_normals.scatter_add_(0, i1[..., None].repeat(1, 3), face_normals) |
|
v_normals.scatter_add_(0, i2[..., None].repeat(1, 3), face_normals) |
|
|
|
v_normals = torch.nn.functional.normalize(v_normals, dim=1) |
|
return v_normals |
|
|
|
|
|
class SparseFeatures2Mesh: |
|
def __init__(self, device="cuda", res=64, use_color=True): |
|
''' |
|
a model to generate a mesh from sparse features structures using flexicube |
|
''' |
|
super().__init__() |
|
self.device=device |
|
self.res = res |
|
self.mesh_extractor = FlexiCubes(device=device) |
|
self.sdf_bias = -1.0 / res |
|
verts, cube = construct_dense_grid(self.res, self.device) |
|
self.reg_c = cube.to(self.device) |
|
self.reg_v = verts.to(self.device) |
|
self.use_color = use_color |
|
self._calc_layout() |
|
|
|
def _calc_layout(self): |
|
LAYOUTS = { |
|
'sdf': {'shape': (8, 1), 'size': 8}, |
|
'deform': {'shape': (8, 3), 'size': 8 * 3}, |
|
'weights': {'shape': (21,), 'size': 21} |
|
} |
|
if self.use_color: |
|
''' |
|
6 channel color including normal map |
|
''' |
|
LAYOUTS['color'] = {'shape': (8, 6,), 'size': 8 * 6} |
|
self.layouts = edict(LAYOUTS) |
|
start = 0 |
|
for k, v in self.layouts.items(): |
|
v['range'] = (start, start + v['size']) |
|
start += v['size'] |
|
self.feats_channels = start |
|
|
|
def get_layout(self, feats : torch.Tensor, name : str): |
|
if name not in self.layouts: |
|
return None |
|
return feats[:, self.layouts[name]['range'][0]:self.layouts[name]['range'][1]].reshape(-1, *self.layouts[name]['shape']) |
|
|
|
def __call__(self, cubefeats : SparseTensor, training=False): |
|
""" |
|
Generates a mesh based on the specified sparse voxel structures. |
|
Args: |
|
cube_attrs [Nx21] : Sparse Tensor attrs about cube weights |
|
verts_attrs [Nx10] : [0:1] SDF [1:4] deform [4:7] color [7:10] normal |
|
Returns: |
|
return the success tag and ni you loss, |
|
""" |
|
|
|
coords = cubefeats.coords[:, 1:] |
|
feats = cubefeats.feats |
|
|
|
sdf, deform, color, weights = [self.get_layout(feats, name) for name in ['sdf', 'deform', 'color', 'weights']] |
|
sdf += self.sdf_bias |
|
v_attrs = [sdf, deform, color] if self.use_color else [sdf, deform] |
|
v_pos, v_attrs, reg_loss = sparse_cube2verts(coords, torch.cat(v_attrs, dim=-1), training=training) |
|
v_attrs_d = get_dense_attrs(v_pos, v_attrs, res=self.res+1, sdf_init=True) |
|
weights_d = get_dense_attrs(coords, weights, res=self.res, sdf_init=False) |
|
if self.use_color: |
|
sdf_d, deform_d, colors_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4], v_attrs_d[..., 4:] |
|
else: |
|
sdf_d, deform_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4] |
|
colors_d = None |
|
|
|
x_nx3 = get_defomed_verts(self.reg_v, deform_d, self.res) |
|
|
|
vertices, faces, L_dev, colors = self.mesh_extractor( |
|
voxelgrid_vertices=x_nx3, |
|
scalar_field=sdf_d, |
|
cube_idx=self.reg_c, |
|
resolution=self.res, |
|
beta=weights_d[:, :12], |
|
alpha=weights_d[:, 12:20], |
|
gamma_f=weights_d[:, 20], |
|
voxelgrid_colors=colors_d, |
|
training=training) |
|
|
|
mesh = MeshExtractResult(vertices=vertices, faces=faces, vertex_attrs=colors, res=self.res) |
|
if training: |
|
if mesh.success: |
|
reg_loss += L_dev.mean() * 0.5 |
|
reg_loss += (weights[:,:20]).abs().mean() * 0.2 |
|
mesh.reg_loss = reg_loss |
|
mesh.tsdf_v = get_defomed_verts(v_pos, v_attrs[:, 1:4], self.res) |
|
mesh.tsdf_s = v_attrs[:, 0] |
|
return mesh |
|
|