|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 |
|
from ...modules import sparse as sp |
|
from .base import SparseTransformerBase |
|
from ...representations import MeshExtractResult |
|
from ...representations.mesh import SparseFeatures2Mesh |
|
|
|
|
|
class SparseSubdivideBlock3d(nn.Module): |
|
""" |
|
A 3D subdivide block that can subdivide the sparse tensor. |
|
|
|
Args: |
|
channels: channels in the inputs and outputs. |
|
out_channels: if specified, the number of output channels. |
|
num_groups: the number of groups for the group norm. |
|
""" |
|
def __init__( |
|
self, |
|
channels: int, |
|
resolution: int, |
|
out_channels: Optional[int] = None, |
|
num_groups: int = 32 |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.resolution = resolution |
|
self.out_resolution = resolution * 2 |
|
self.out_channels = out_channels or channels |
|
|
|
self.act_layers = nn.Sequential( |
|
sp.SparseGroupNorm32(num_groups, channels), |
|
sp.SparseSiLU() |
|
) |
|
|
|
self.sub = sp.SparseSubdivide() |
|
|
|
self.out_layers = nn.Sequential( |
|
sp.SparseConv3d(channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}"), |
|
sp.SparseGroupNorm32(num_groups, self.out_channels), |
|
sp.SparseSiLU(), |
|
zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}")), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
else: |
|
self.skip_connection = sp.SparseConv3d(channels, self.out_channels, 1, indice_key=f"res_{self.out_resolution}") |
|
|
|
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor: |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
|
|
Args: |
|
x: an [N x C x ...] Tensor of features. |
|
Returns: |
|
an [N x C x ...] Tensor of outputs. |
|
""" |
|
h = self.act_layers(x) |
|
h = self.sub(h) |
|
x = self.sub(x) |
|
h = self.out_layers(h) |
|
h = h + self.skip_connection(x) |
|
return h |
|
|
|
|
|
class SLatMeshDecoder(SparseTransformerBase): |
|
def __init__( |
|
self, |
|
resolution: int, |
|
model_channels: int, |
|
latent_channels: int, |
|
num_blocks: int, |
|
num_heads: Optional[int] = None, |
|
num_head_channels: Optional[int] = 64, |
|
mlp_ratio: float = 4, |
|
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", |
|
window_size: int = 8, |
|
pe_mode: Literal["ape", "rope"] = "ape", |
|
use_fp16: bool = False, |
|
use_checkpoint: bool = False, |
|
qk_rms_norm: bool = False, |
|
representation_config: dict = None, |
|
): |
|
super().__init__( |
|
in_channels=latent_channels, |
|
model_channels=model_channels, |
|
num_blocks=num_blocks, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
mlp_ratio=mlp_ratio, |
|
attn_mode=attn_mode, |
|
window_size=window_size, |
|
pe_mode=pe_mode, |
|
use_fp16=use_fp16, |
|
use_checkpoint=use_checkpoint, |
|
qk_rms_norm=qk_rms_norm, |
|
) |
|
self.resolution = resolution |
|
self.rep_config = representation_config |
|
self.mesh_extractor = SparseFeatures2Mesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False)) |
|
self.out_channels = self.mesh_extractor.feats_channels |
|
self.upsample = nn.ModuleList([ |
|
SparseSubdivideBlock3d( |
|
channels=model_channels, |
|
resolution=resolution, |
|
out_channels=model_channels // 4 |
|
), |
|
SparseSubdivideBlock3d( |
|
channels=model_channels // 4, |
|
resolution=resolution * 2, |
|
out_channels=model_channels // 8 |
|
) |
|
]) |
|
self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels) |
|
|
|
self.initialize_weights() |
|
if use_fp16: |
|
self.convert_to_fp16() |
|
|
|
def initialize_weights(self) -> None: |
|
super().initialize_weights() |
|
|
|
nn.init.constant_(self.out_layer.weight, 0) |
|
nn.init.constant_(self.out_layer.bias, 0) |
|
|
|
def convert_to_fp16(self) -> None: |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
super().convert_to_fp16() |
|
self.upsample.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self) -> None: |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
super().convert_to_fp32() |
|
self.upsample.apply(convert_module_to_f32) |
|
|
|
def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]: |
|
""" |
|
Convert a batch of network outputs to 3D representations. |
|
|
|
Args: |
|
x: The [N x * x C] sparse tensor output by the network. |
|
|
|
Returns: |
|
list of representations |
|
""" |
|
ret = [] |
|
for i in range(x.shape[0]): |
|
mesh = self.mesh_extractor(x[i], training=self.training) |
|
ret.append(mesh) |
|
return ret |
|
|
|
def forward(self, x: sp.SparseTensor) -> List[MeshExtractResult]: |
|
h = super().forward(x) |
|
for block in self.upsample: |
|
h = block(h) |
|
h = h.type(x.dtype) |
|
h = self.out_layer(h) |
|
return self.to_representation(h) |
|
|