|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from ..modules.norm import GroupNorm32, ChannelLayerNorm32 |
|
from ..modules.spatial import pixel_shuffle_3d |
|
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 |
|
|
|
|
|
def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module: |
|
""" |
|
Return a normalization layer. |
|
""" |
|
if norm_type == "group": |
|
return GroupNorm32(32, *args, **kwargs) |
|
elif norm_type == "layer": |
|
return ChannelLayerNorm32(*args, **kwargs) |
|
else: |
|
raise ValueError(f"Invalid norm type {norm_type}") |
|
|
|
|
|
class ResBlock3d(nn.Module): |
|
def __init__( |
|
self, |
|
channels: int, |
|
out_channels: Optional[int] = None, |
|
norm_type: Literal["group", "layer"] = "layer", |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
|
|
self.norm1 = norm_layer(norm_type, channels) |
|
self.norm2 = norm_layer(norm_type, self.out_channels) |
|
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1) |
|
self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1)) |
|
self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
h = self.norm1(x) |
|
h = F.silu(h) |
|
h = self.conv1(h) |
|
h = self.norm2(h) |
|
h = F.silu(h) |
|
h = self.conv2(h) |
|
h = h + self.skip_connection(x) |
|
return h |
|
|
|
|
|
class DownsampleBlock3d(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
mode: Literal["conv", "avgpool"] = "conv", |
|
): |
|
assert mode in ["conv", "avgpool"], f"Invalid mode {mode}" |
|
|
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
if mode == "conv": |
|
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2) |
|
elif mode == "avgpool": |
|
assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if hasattr(self, "conv"): |
|
return self.conv(x) |
|
else: |
|
return F.avg_pool3d(x, 2) |
|
|
|
|
|
class UpsampleBlock3d(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
mode: Literal["conv", "nearest"] = "conv", |
|
): |
|
assert mode in ["conv", "nearest"], f"Invalid mode {mode}" |
|
|
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
if mode == "conv": |
|
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1) |
|
elif mode == "nearest": |
|
assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if hasattr(self, "conv"): |
|
x = self.conv(x) |
|
return pixel_shuffle_3d(x, 2) |
|
else: |
|
return F.interpolate(x, scale_factor=2, mode="nearest") |
|
|
|
|
|
class SparseStructureEncoder(nn.Module): |
|
""" |
|
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3). |
|
|
|
Args: |
|
in_channels (int): Channels of the input. |
|
latent_channels (int): Channels of the latent representation. |
|
num_res_blocks (int): Number of residual blocks at each resolution. |
|
channels (List[int]): Channels of the encoder blocks. |
|
num_res_blocks_middle (int): Number of residual blocks in the middle. |
|
norm_type (Literal["group", "layer"]): Type of normalization layer. |
|
use_fp16 (bool): Whether to use FP16. |
|
""" |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
latent_channels: int, |
|
num_res_blocks: int, |
|
channels: List[int], |
|
num_res_blocks_middle: int = 2, |
|
norm_type: Literal["group", "layer"] = "layer", |
|
use_fp16: bool = False, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.latent_channels = latent_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.channels = channels |
|
self.num_res_blocks_middle = num_res_blocks_middle |
|
self.norm_type = norm_type |
|
self.use_fp16 = use_fp16 |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
|
|
self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1) |
|
|
|
self.blocks = nn.ModuleList([]) |
|
for i, ch in enumerate(channels): |
|
self.blocks.extend([ |
|
ResBlock3d(ch, ch) |
|
for _ in range(num_res_blocks) |
|
]) |
|
if i < len(channels) - 1: |
|
self.blocks.append( |
|
DownsampleBlock3d(ch, channels[i+1]) |
|
) |
|
|
|
self.middle_block = nn.Sequential(*[ |
|
ResBlock3d(channels[-1], channels[-1]) |
|
for _ in range(num_res_blocks_middle) |
|
]) |
|
|
|
self.out_layer = nn.Sequential( |
|
norm_layer(norm_type, channels[-1]), |
|
nn.SiLU(), |
|
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1) |
|
) |
|
|
|
if use_fp16: |
|
self.convert_to_fp16() |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
Return the device of the model. |
|
""" |
|
return next(self.parameters()).device |
|
|
|
def convert_to_fp16(self) -> None: |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
self.use_fp16 = True |
|
self.dtype = torch.float16 |
|
self.blocks.apply(convert_module_to_f16) |
|
self.middle_block.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self) -> None: |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
self.use_fp16 = False |
|
self.dtype = torch.float32 |
|
self.blocks.apply(convert_module_to_f32) |
|
self.middle_block.apply(convert_module_to_f32) |
|
|
|
def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor: |
|
h = self.input_layer(x) |
|
h = h.type(self.dtype) |
|
|
|
for block in self.blocks: |
|
h = block(h) |
|
h = self.middle_block(h) |
|
|
|
h = h.type(x.dtype) |
|
h = self.out_layer(h) |
|
|
|
mean, logvar = h.chunk(2, dim=1) |
|
|
|
if sample_posterior: |
|
std = torch.exp(0.5 * logvar) |
|
z = mean + std * torch.randn_like(std) |
|
else: |
|
z = mean |
|
|
|
if return_raw: |
|
return z, mean, logvar |
|
return z |
|
|
|
|
|
class SparseStructureDecoder(nn.Module): |
|
""" |
|
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3). |
|
|
|
Args: |
|
out_channels (int): Channels of the output. |
|
latent_channels (int): Channels of the latent representation. |
|
num_res_blocks (int): Number of residual blocks at each resolution. |
|
channels (List[int]): Channels of the decoder blocks. |
|
num_res_blocks_middle (int): Number of residual blocks in the middle. |
|
norm_type (Literal["group", "layer"]): Type of normalization layer. |
|
use_fp16 (bool): Whether to use FP16. |
|
""" |
|
def __init__( |
|
self, |
|
out_channels: int, |
|
latent_channels: int, |
|
num_res_blocks: int, |
|
channels: List[int], |
|
num_res_blocks_middle: int = 2, |
|
norm_type: Literal["group", "layer"] = "layer", |
|
use_fp16: bool = False, |
|
): |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.latent_channels = latent_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.channels = channels |
|
self.num_res_blocks_middle = num_res_blocks_middle |
|
self.norm_type = norm_type |
|
self.use_fp16 = use_fp16 |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
|
|
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1) |
|
|
|
self.middle_block = nn.Sequential(*[ |
|
ResBlock3d(channels[0], channels[0]) |
|
for _ in range(num_res_blocks_middle) |
|
]) |
|
|
|
self.blocks = nn.ModuleList([]) |
|
for i, ch in enumerate(channels): |
|
self.blocks.extend([ |
|
ResBlock3d(ch, ch) |
|
for _ in range(num_res_blocks) |
|
]) |
|
if i < len(channels) - 1: |
|
self.blocks.append( |
|
UpsampleBlock3d(ch, channels[i+1]) |
|
) |
|
|
|
self.out_layer = nn.Sequential( |
|
norm_layer(norm_type, channels[-1]), |
|
nn.SiLU(), |
|
nn.Conv3d(channels[-1], out_channels, 3, padding=1) |
|
) |
|
|
|
if use_fp16: |
|
self.convert_to_fp16() |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
Return the device of the model. |
|
""" |
|
return next(self.parameters()).device |
|
|
|
def convert_to_fp16(self) -> None: |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
self.use_fp16 = True |
|
self.dtype = torch.float16 |
|
self.blocks.apply(convert_module_to_f16) |
|
self.middle_block.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self) -> None: |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
self.use_fp16 = False |
|
self.dtype = torch.float32 |
|
self.blocks.apply(convert_module_to_f32) |
|
self.middle_block.apply(convert_module_to_f32) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
h = self.input_layer(x) |
|
|
|
h = h.type(self.dtype) |
|
|
|
h = self.middle_block(h) |
|
for block in self.blocks: |
|
h = block(h) |
|
|
|
h = h.type(x.dtype) |
|
h = self.out_layer(h) |
|
return h |
|
|