|
import torch |
|
import torch.nn as nn |
|
from .. import SparseTensor |
|
|
|
|
|
class SparseConv3d(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None): |
|
super(SparseConv3d, self).__init__() |
|
if 'torchsparse' not in globals(): |
|
import torchsparse |
|
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias) |
|
|
|
def forward(self, x: SparseTensor) -> SparseTensor: |
|
out = self.conv(x.data) |
|
new_shape = [x.shape[0], self.conv.out_channels] |
|
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None) |
|
out._spatial_cache = x._spatial_cache |
|
out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)]) |
|
return out |
|
|
|
|
|
class SparseInverseConv3d(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None): |
|
super(SparseInverseConv3d, self).__init__() |
|
if 'torchsparse' not in globals(): |
|
import torchsparse |
|
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True) |
|
|
|
def forward(self, x: SparseTensor) -> SparseTensor: |
|
out = self.conv(x.data) |
|
new_shape = [x.shape[0], self.conv.out_channels] |
|
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None) |
|
out._spatial_cache = x._spatial_cache |
|
out._scale = tuple([s // stride for s, stride in zip(x._scale, self.conv.stride)]) |
|
return out |
|
|
|
|
|
|
|
|