|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
from ..attention import MultiHeadAttention |
|
from ..norm import LayerNorm32 |
|
|
|
|
|
class AbsolutePositionEmbedder(nn.Module): |
|
""" |
|
Embeds spatial positions into vector representations. |
|
""" |
|
def __init__(self, channels: int, in_channels: int = 3): |
|
super().__init__() |
|
self.channels = channels |
|
self.in_channels = in_channels |
|
self.freq_dim = channels // in_channels // 2 |
|
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim |
|
self.freqs = 1.0 / (10000 ** self.freqs) |
|
|
|
def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Create sinusoidal position embeddings. |
|
|
|
Args: |
|
x: a 1-D Tensor of N indices |
|
|
|
Returns: |
|
an (N, D) Tensor of positional embeddings. |
|
""" |
|
self.freqs = self.freqs.to(x.device) |
|
out = torch.outer(x, self.freqs) |
|
out = torch.cat([torch.sin(out), torch.cos(out)], dim=-1) |
|
return out |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
x (torch.Tensor): (N, D) tensor of spatial positions |
|
""" |
|
N, D = x.shape |
|
assert D == self.in_channels, "Input dimension must match number of input channels" |
|
embed = self._sin_cos_embedding(x.reshape(-1)) |
|
embed = embed.reshape(N, -1) |
|
if embed.shape[1] < self.channels: |
|
embed = torch.cat([embed, torch.zeros(N, self.channels - embed.shape[1], device=embed.device)], dim=-1) |
|
return embed |
|
|
|
|
|
class FeedForwardNet(nn.Module): |
|
def __init__(self, channels: int, mlp_ratio: float = 4.0): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(channels, int(channels * mlp_ratio)), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(int(channels * mlp_ratio), channels), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.mlp(x) |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
""" |
|
Transformer block (MSA + FFN). |
|
""" |
|
def __init__( |
|
self, |
|
channels: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
attn_mode: Literal["full", "windowed"] = "full", |
|
window_size: Optional[int] = None, |
|
shift_window: Optional[int] = None, |
|
use_checkpoint: bool = False, |
|
use_rope: bool = False, |
|
qk_rms_norm: bool = False, |
|
qkv_bias: bool = True, |
|
ln_affine: bool = False, |
|
): |
|
super().__init__() |
|
self.use_checkpoint = use_checkpoint |
|
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) |
|
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) |
|
self.attn = MultiHeadAttention( |
|
channels, |
|
num_heads=num_heads, |
|
attn_mode=attn_mode, |
|
window_size=window_size, |
|
shift_window=shift_window, |
|
qkv_bias=qkv_bias, |
|
use_rope=use_rope, |
|
qk_rms_norm=qk_rms_norm, |
|
) |
|
self.mlp = FeedForwardNet( |
|
channels, |
|
mlp_ratio=mlp_ratio, |
|
) |
|
|
|
def _forward(self, x: torch.Tensor) -> torch.Tensor: |
|
h = self.norm1(x) |
|
h = self.attn(h) |
|
x = x + h |
|
h = self.norm2(x) |
|
h = self.mlp(h) |
|
x = x + h |
|
return x |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.use_checkpoint: |
|
return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False) |
|
else: |
|
return self._forward(x) |
|
|
|
|
|
class TransformerCrossBlock(nn.Module): |
|
""" |
|
Transformer cross-attention block (MSA + MCA + FFN). |
|
""" |
|
def __init__( |
|
self, |
|
channels: int, |
|
ctx_channels: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
attn_mode: Literal["full", "windowed"] = "full", |
|
window_size: Optional[int] = None, |
|
shift_window: Optional[Tuple[int, int, int]] = None, |
|
use_checkpoint: bool = False, |
|
use_rope: bool = False, |
|
qk_rms_norm: bool = False, |
|
qk_rms_norm_cross: bool = False, |
|
qkv_bias: bool = True, |
|
ln_affine: bool = False, |
|
): |
|
super().__init__() |
|
self.use_checkpoint = use_checkpoint |
|
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) |
|
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) |
|
self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) |
|
self.self_attn = MultiHeadAttention( |
|
channels, |
|
num_heads=num_heads, |
|
type="self", |
|
attn_mode=attn_mode, |
|
window_size=window_size, |
|
shift_window=shift_window, |
|
qkv_bias=qkv_bias, |
|
use_rope=use_rope, |
|
qk_rms_norm=qk_rms_norm, |
|
) |
|
self.cross_attn = MultiHeadAttention( |
|
channels, |
|
ctx_channels=ctx_channels, |
|
num_heads=num_heads, |
|
type="cross", |
|
attn_mode="full", |
|
qkv_bias=qkv_bias, |
|
qk_rms_norm=qk_rms_norm_cross, |
|
) |
|
self.mlp = FeedForwardNet( |
|
channels, |
|
mlp_ratio=mlp_ratio, |
|
) |
|
|
|
def _forward(self, x: torch.Tensor, context: torch.Tensor): |
|
h = self.norm1(x) |
|
h = self.self_attn(h) |
|
x = x + h |
|
h = self.norm2(x) |
|
h = self.cross_attn(h, context) |
|
x = x + h |
|
h = self.norm3(x) |
|
h = self.mlp(h) |
|
x = x + h |
|
return x |
|
|
|
def forward(self, x: torch.Tensor, context: torch.Tensor): |
|
if self.use_checkpoint: |
|
return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False) |
|
else: |
|
return self._forward(x, context) |
|
|