|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import math |
|
import cv2 |
|
from scipy.stats import qmc |
|
from easydict import EasyDict as edict |
|
from ..representations.octree import DfsOctree |
|
|
|
|
|
def intrinsics_to_projection( |
|
intrinsics: torch.Tensor, |
|
near: float, |
|
far: float, |
|
) -> torch.Tensor: |
|
""" |
|
OpenCV intrinsics to OpenGL perspective matrix |
|
|
|
Args: |
|
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix |
|
near (float): near plane to clip |
|
far (float): far plane to clip |
|
Returns: |
|
(torch.Tensor): [4, 4] OpenGL perspective matrix |
|
""" |
|
fx, fy = intrinsics[0, 0], intrinsics[1, 1] |
|
cx, cy = intrinsics[0, 2], intrinsics[1, 2] |
|
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device) |
|
ret[0, 0] = 2 * fx |
|
ret[1, 1] = 2 * fy |
|
ret[0, 2] = 2 * cx - 1 |
|
ret[1, 2] = - 2 * cy + 1 |
|
ret[2, 2] = far / (far - near) |
|
ret[2, 3] = near * far / (near - far) |
|
ret[3, 2] = 1. |
|
return ret |
|
|
|
|
|
def render(viewpoint_camera, octree : DfsOctree, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, used_rank = None, colors_overwrite = None, aux=None, halton_sampler=None): |
|
""" |
|
Render the scene. |
|
|
|
Background tensor (bg_color) must be on GPU! |
|
""" |
|
|
|
if 'OctreeTrivecRasterizer' not in globals(): |
|
from diffoctreerast import OctreeVoxelRasterizer, OctreeGaussianRasterizer, OctreeTrivecRasterizer, OctreeDecoupolyRasterizer |
|
|
|
|
|
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) |
|
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) |
|
|
|
raster_settings = edict( |
|
image_height=int(viewpoint_camera.image_height), |
|
image_width=int(viewpoint_camera.image_width), |
|
tanfovx=tanfovx, |
|
tanfovy=tanfovy, |
|
bg=bg_color, |
|
scale_modifier=scaling_modifier, |
|
viewmatrix=viewpoint_camera.world_view_transform, |
|
projmatrix=viewpoint_camera.full_proj_transform, |
|
sh_degree=octree.active_sh_degree, |
|
campos=viewpoint_camera.camera_center, |
|
with_distloss=pipe.with_distloss, |
|
jitter=pipe.jitter, |
|
debug=pipe.debug, |
|
) |
|
|
|
positions = octree.get_xyz |
|
if octree.primitive == "voxel": |
|
densities = octree.get_density |
|
elif octree.primitive == "gaussian": |
|
opacities = octree.get_opacity |
|
elif octree.primitive == "trivec": |
|
trivecs = octree.get_trivec |
|
densities = octree.get_density |
|
raster_settings.density_shift = octree.density_shift |
|
elif octree.primitive == "decoupoly": |
|
decoupolys_V, decoupolys_g = octree.get_decoupoly |
|
densities = octree.get_density |
|
raster_settings.density_shift = octree.density_shift |
|
else: |
|
raise ValueError(f"Unknown primitive {octree.primitive}") |
|
depths = octree.get_depth |
|
|
|
|
|
|
|
colors_precomp = None |
|
shs = octree.get_features |
|
if octree.primitive in ["voxel", "gaussian"] and colors_overwrite is not None: |
|
colors_precomp = colors_overwrite |
|
shs = None |
|
|
|
ret = edict() |
|
|
|
if octree.primitive == "voxel": |
|
renderer = OctreeVoxelRasterizer(raster_settings=raster_settings) |
|
rgb, depth, alpha, distloss = renderer( |
|
positions = positions, |
|
densities = densities, |
|
shs = shs, |
|
colors_precomp = colors_precomp, |
|
depths = depths, |
|
aabb = octree.aabb, |
|
aux = aux, |
|
) |
|
ret['rgb'] = rgb |
|
ret['depth'] = depth |
|
ret['alpha'] = alpha |
|
ret['distloss'] = distloss |
|
elif octree.primitive == "gaussian": |
|
renderer = OctreeGaussianRasterizer(raster_settings=raster_settings) |
|
rgb, depth, alpha = renderer( |
|
positions = positions, |
|
opacities = opacities, |
|
shs = shs, |
|
colors_precomp = colors_precomp, |
|
depths = depths, |
|
aabb = octree.aabb, |
|
aux = aux, |
|
) |
|
ret['rgb'] = rgb |
|
ret['depth'] = depth |
|
ret['alpha'] = alpha |
|
elif octree.primitive == "trivec": |
|
raster_settings.used_rank = used_rank if used_rank is not None else trivecs.shape[1] |
|
renderer = OctreeTrivecRasterizer(raster_settings=raster_settings) |
|
rgb, depth, alpha, percent_depth = renderer( |
|
positions = positions, |
|
trivecs = trivecs, |
|
densities = densities, |
|
shs = shs, |
|
colors_precomp = colors_precomp, |
|
colors_overwrite = colors_overwrite, |
|
depths = depths, |
|
aabb = octree.aabb, |
|
aux = aux, |
|
halton_sampler = halton_sampler, |
|
) |
|
ret['percent_depth'] = percent_depth |
|
ret['rgb'] = rgb |
|
ret['depth'] = depth |
|
ret['alpha'] = alpha |
|
elif octree.primitive == "decoupoly": |
|
raster_settings.used_rank = used_rank if used_rank is not None else decoupolys_V.shape[1] |
|
renderer = OctreeDecoupolyRasterizer(raster_settings=raster_settings) |
|
rgb, depth, alpha = renderer( |
|
positions = positions, |
|
decoupolys_V = decoupolys_V, |
|
decoupolys_g = decoupolys_g, |
|
densities = densities, |
|
shs = shs, |
|
colors_precomp = colors_precomp, |
|
depths = depths, |
|
aabb = octree.aabb, |
|
aux = aux, |
|
) |
|
ret['rgb'] = rgb |
|
ret['depth'] = depth |
|
ret['alpha'] = alpha |
|
|
|
return ret |
|
|
|
|
|
class OctreeRenderer: |
|
""" |
|
Renderer for the Voxel representation. |
|
|
|
Args: |
|
rendering_options (dict): Rendering options. |
|
""" |
|
|
|
def __init__(self, rendering_options={}) -> None: |
|
try: |
|
import diffoctreerast |
|
except ImportError: |
|
print("\033[93m[WARNING] diffoctreerast is not installed. The renderer will be disabled.\033[0m") |
|
self.unsupported = True |
|
else: |
|
self.unsupported = False |
|
|
|
self.pipe = edict({ |
|
"with_distloss": False, |
|
"with_aux": False, |
|
"scale_modifier": 1.0, |
|
"used_rank": None, |
|
"jitter": False, |
|
"debug": False, |
|
}) |
|
self.rendering_options = edict({ |
|
"resolution": None, |
|
"near": None, |
|
"far": None, |
|
"ssaa": 1, |
|
"bg_color": 'random', |
|
}) |
|
self.halton_sampler = qmc.Halton(2, scramble=False) |
|
self.rendering_options.update(rendering_options) |
|
self.bg_color = None |
|
|
|
def render( |
|
self, |
|
octree: DfsOctree, |
|
extrinsics: torch.Tensor, |
|
intrinsics: torch.Tensor, |
|
colors_overwrite: torch.Tensor = None, |
|
) -> edict: |
|
""" |
|
Render the octree. |
|
|
|
Args: |
|
octree (Octree): octree |
|
extrinsics (torch.Tensor): (4, 4) camera extrinsics |
|
intrinsics (torch.Tensor): (3, 3) camera intrinsics |
|
colors_overwrite (torch.Tensor): (N, 3) override color |
|
|
|
Returns: |
|
edict containing: |
|
color (torch.Tensor): (3, H, W) rendered color |
|
depth (torch.Tensor): (H, W) rendered depth |
|
alpha (torch.Tensor): (H, W) rendered alpha |
|
distloss (Optional[torch.Tensor]): (H, W) rendered distance loss |
|
percent_depth (Optional[torch.Tensor]): (H, W) rendered percent depth |
|
aux (Optional[edict]): auxiliary tensors |
|
""" |
|
resolution = self.rendering_options["resolution"] |
|
near = self.rendering_options["near"] |
|
far = self.rendering_options["far"] |
|
ssaa = self.rendering_options["ssaa"] |
|
|
|
if self.unsupported: |
|
image = np.zeros((512, 512, 3), dtype=np.uint8) |
|
text_bbox = cv2.getTextSize("Unsupported", cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[0] |
|
origin = (512 - text_bbox[0]) // 2, (512 - text_bbox[1]) // 2 |
|
image = cv2.putText(image, "Unsupported", origin, cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3, cv2.LINE_AA) |
|
return { |
|
'color': torch.tensor(image, dtype=torch.float32).permute(2, 0, 1) / 255, |
|
} |
|
|
|
if self.rendering_options["bg_color"] == 'random': |
|
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda") |
|
if np.random.rand() < 0.5: |
|
self.bg_color += 1 |
|
else: |
|
self.bg_color = torch.tensor(self.rendering_options["bg_color"], dtype=torch.float32, device="cuda") |
|
|
|
if self.pipe["with_aux"]: |
|
aux = { |
|
'grad_color2': torch.zeros((octree.num_leaf_nodes, 3), dtype=torch.float32, requires_grad=True, device="cuda") + 0, |
|
'contributions': torch.zeros((octree.num_leaf_nodes, 1), dtype=torch.float32, requires_grad=True, device="cuda") + 0, |
|
} |
|
for k in aux.keys(): |
|
aux[k].requires_grad_() |
|
aux[k].retain_grad() |
|
else: |
|
aux = None |
|
|
|
view = extrinsics |
|
perspective = intrinsics_to_projection(intrinsics, near, far) |
|
camera = torch.inverse(view)[:3, 3] |
|
focalx = intrinsics[0, 0] |
|
focaly = intrinsics[1, 1] |
|
fovx = 2 * torch.atan(0.5 / focalx) |
|
fovy = 2 * torch.atan(0.5 / focaly) |
|
|
|
camera_dict = edict({ |
|
"image_height": resolution * ssaa, |
|
"image_width": resolution * ssaa, |
|
"FoVx": fovx, |
|
"FoVy": fovy, |
|
"znear": near, |
|
"zfar": far, |
|
"world_view_transform": view.T.contiguous(), |
|
"projection_matrix": perspective.T.contiguous(), |
|
"full_proj_transform": (perspective @ view).T.contiguous(), |
|
"camera_center": camera |
|
}) |
|
|
|
|
|
render_ret = render(camera_dict, octree, self.pipe, self.bg_color, aux=aux, colors_overwrite=colors_overwrite, scaling_modifier=self.pipe.scale_modifier, used_rank=self.pipe.used_rank, halton_sampler=self.halton_sampler) |
|
|
|
if ssaa > 1: |
|
render_ret.rgb = F.interpolate(render_ret.rgb[None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze() |
|
render_ret.depth = F.interpolate(render_ret.depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze() |
|
render_ret.alpha = F.interpolate(render_ret.alpha[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze() |
|
if hasattr(render_ret, 'percent_depth'): |
|
render_ret.percent_depth = F.interpolate(render_ret.percent_depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze() |
|
|
|
ret = edict({ |
|
'color': render_ret.rgb, |
|
'depth': render_ret.depth, |
|
'alpha': render_ret.alpha, |
|
}) |
|
if self.pipe["with_distloss"] and 'distloss' in render_ret: |
|
ret['distloss'] = render_ret.distloss |
|
if self.pipe["with_aux"]: |
|
ret['aux'] = aux |
|
if hasattr(render_ret, 'percent_depth'): |
|
ret['percent_depth'] = render_ret.percent_depth |
|
return ret |
|
|