from typing import * import torch import torch.nn as nn import torch.nn.functional as F from .full_attn import scaled_dot_product_attention class MultiHeadRMSNorm(nn.Module): def __init__(self, dim: int, heads: int): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(heads, dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: return (F.normalize(x.float(), dim = -1) * self.gamma * self.scale).to(x.dtype) class RotaryPositionEmbedder(nn.Module): def __init__(self, hidden_size: int, in_channels: int = 3): super().__init__() assert hidden_size % 2 == 0, "Hidden size must be divisible by 2" self.hidden_size = hidden_size self.in_channels = in_channels self.freq_dim = hidden_size // in_channels // 2 self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim self.freqs = 1.0 / (10000 ** self.freqs) def _get_phases(self, indices: torch.Tensor) -> torch.Tensor: self.freqs = self.freqs.to(indices.device) phases = torch.outer(indices, self.freqs) phases = torch.polar(torch.ones_like(phases), phases) return phases def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor: x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) x_rotated = x_complex * phases x_embed = torch.view_as_real(x_rotated).reshape(*x_rotated.shape[:-1], -1).to(x.dtype) return x_embed def forward(self, q: torch.Tensor, k: torch.Tensor, indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: q (sp.SparseTensor): [..., N, D] tensor of queries k (sp.SparseTensor): [..., N, D] tensor of keys indices (torch.Tensor): [..., N, C] tensor of spatial positions """ if indices is None: indices = torch.arange(q.shape[-2], device=q.device) if len(q.shape) > 2: indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,)) phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1) if phases.shape[1] < self.hidden_size // 2: phases = torch.cat([phases, torch.polar( torch.ones(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device), torch.zeros(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device) )], dim=-1) q_embed = self._rotary_embedding(q, phases) k_embed = self._rotary_embedding(k, phases) return q_embed, k_embed class MultiHeadAttention(nn.Module): def __init__( self, channels: int, num_heads: int, ctx_channels: Optional[int]=None, type: Literal["self", "cross"] = "self", attn_mode: Literal["full", "windowed"] = "full", window_size: Optional[int] = None, shift_window: Optional[Tuple[int, int, int]] = None, qkv_bias: bool = True, use_rope: bool = False, qk_rms_norm: bool = False, ): super().__init__() assert channels % num_heads == 0 assert type in ["self", "cross"], f"Invalid attention type: {type}" assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}" assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention" if attn_mode == "windowed": raise NotImplementedError("Windowed attention is not yet implemented") self.channels = channels self.head_dim = channels // num_heads self.ctx_channels = ctx_channels if ctx_channels is not None else channels self.num_heads = num_heads self._type = type self.attn_mode = attn_mode self.window_size = window_size self.shift_window = shift_window self.use_rope = use_rope self.qk_rms_norm = qk_rms_norm if self._type == "self": self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias) else: self.to_q = nn.Linear(channels, channels, bias=qkv_bias) self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias) if self.qk_rms_norm: self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads) self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads) self.to_out = nn.Linear(channels, channels) if use_rope: self.rope = RotaryPositionEmbedder(channels) def forward(self, x: torch.Tensor, context: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None) -> torch.Tensor: B, L, C = x.shape if self._type == "self": qkv = self.to_qkv(x) qkv = qkv.reshape(B, L, 3, self.num_heads, -1) if self.use_rope: q, k, v = qkv.unbind(dim=2) q, k = self.rope(q, k, indices) qkv = torch.stack([q, k, v], dim=2) if self.attn_mode == "full": if self.qk_rms_norm: q, k, v = qkv.unbind(dim=2) q = self.q_rms_norm(q) k = self.k_rms_norm(k) h = scaled_dot_product_attention(q, k, v) else: h = scaled_dot_product_attention(qkv) elif self.attn_mode == "windowed": raise NotImplementedError("Windowed attention is not yet implemented") else: Lkv = context.shape[1] q = self.to_q(x) kv = self.to_kv(context) q = q.reshape(B, L, self.num_heads, -1) kv = kv.reshape(B, Lkv, 2, self.num_heads, -1) if self.qk_rms_norm: q = self.q_rms_norm(q) k, v = kv.unbind(dim=2) k = self.k_rms_norm(k) h = scaled_dot_product_attention(q, k, v) else: h = scaled_dot_product_attention(q, kv) h = h.reshape(B, L, -1) h = self.to_out(h) return h