Spaces:
Nymbo
/
Running on Zero

File size: 6,914 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) Facebook, Inc. and its affiliates.

from dataclasses import dataclass
from typing import Any, Optional, Tuple
import torch


@dataclass
class DensePoseChartResult:
    """
    DensePose results for chart-based methods represented by labels and inner
    coordinates (U, V) of individual charts. Each chart is a 2D manifold
    that has an associated label and is parameterized by two coordinates U and V.
    Both U and V take values in [0, 1].
    Thus the results are represented by two tensors:
    - labels (tensor [H, W] of long): contains estimated label for each pixel of
        the detection bounding box of size (H, W)
    - uv (tensor [2, H, W] of float): contains estimated U and V coordinates
        for each pixel of the detection bounding box of size (H, W)
    """

    labels: torch.Tensor
    uv: torch.Tensor

    def to(self, device: torch.device):
        """
        Transfers all tensors to the given device
        """
        labels = self.labels.to(device)
        uv = self.uv.to(device)
        return DensePoseChartResult(labels=labels, uv=uv)


@dataclass
class DensePoseChartResultWithConfidences:
    """
    We add confidence values to DensePoseChartResult
    Thus the results are represented by two tensors:
    - labels (tensor [H, W] of long): contains estimated label for each pixel of
        the detection bounding box of size (H, W)
    - uv (tensor [2, H, W] of float): contains estimated U and V coordinates
        for each pixel of the detection bounding box of size (H, W)
    Plus one [H, W] tensor of float for each confidence type
    """

    labels: torch.Tensor
    uv: torch.Tensor
    sigma_1: Optional[torch.Tensor] = None
    sigma_2: Optional[torch.Tensor] = None
    kappa_u: Optional[torch.Tensor] = None
    kappa_v: Optional[torch.Tensor] = None
    fine_segm_confidence: Optional[torch.Tensor] = None
    coarse_segm_confidence: Optional[torch.Tensor] = None

    def to(self, device: torch.device):
        """
        Transfers all tensors to the given device, except if their value is None
        """

        def to_device_if_tensor(var: Any):
            if isinstance(var, torch.Tensor):
                return var.to(device)
            return var

        return DensePoseChartResultWithConfidences(
            labels=self.labels.to(device),
            uv=self.uv.to(device),
            sigma_1=to_device_if_tensor(self.sigma_1),
            sigma_2=to_device_if_tensor(self.sigma_2),
            kappa_u=to_device_if_tensor(self.kappa_u),
            kappa_v=to_device_if_tensor(self.kappa_v),
            fine_segm_confidence=to_device_if_tensor(self.fine_segm_confidence),
            coarse_segm_confidence=to_device_if_tensor(self.coarse_segm_confidence),
        )


@dataclass
class DensePoseChartResultQuantized:
    """
    DensePose results for chart-based methods represented by labels and quantized
    inner coordinates (U, V) of individual charts. Each chart is a 2D manifold
    that has an associated label and is parameterized by two coordinates U and V.
    Both U and V take values in [0, 1].
    Quantized coordinates Uq and Vq have uint8 values which are obtained as:
      Uq = U * 255 (hence 0 <= Uq <= 255)
      Vq = V * 255 (hence 0 <= Vq <= 255)
    Thus the results are represented by one tensor:
    - labels_uv_uint8 (tensor [3, H, W] of uint8): contains estimated label
        and quantized coordinates Uq and Vq for each pixel of the detection
        bounding box of size (H, W)
    """

    labels_uv_uint8: torch.Tensor

    def to(self, device: torch.device):
        """
        Transfers all tensors to the given device
        """
        labels_uv_uint8 = self.labels_uv_uint8.to(device)
        return DensePoseChartResultQuantized(labels_uv_uint8=labels_uv_uint8)


@dataclass
class DensePoseChartResultCompressed:
    """
    DensePose results for chart-based methods represented by a PNG-encoded string.
    The tensor of quantized DensePose results of size [3, H, W] is considered
    as an image with 3 color channels. PNG compression is applied and the result
    is stored as a Base64-encoded string. The following attributes are defined:
    - shape_chw (tuple of 3 int): contains shape of the result tensor
        (number of channels, height, width)
    - labels_uv_str (str): contains Base64-encoded results tensor of size
        [3, H, W] compressed with PNG compression methods
    """

    shape_chw: Tuple[int, int, int]
    labels_uv_str: str


def quantize_densepose_chart_result(result: DensePoseChartResult) -> DensePoseChartResultQuantized:
    """
    Applies quantization to DensePose chart-based result.

    Args:
        result (DensePoseChartResult): DensePose chart-based result
    Return:
        Quantized DensePose chart-based result (DensePoseChartResultQuantized)
    """
    h, w = result.labels.shape
    labels_uv_uint8 = torch.zeros([3, h, w], dtype=torch.uint8, device=result.labels.device)
    labels_uv_uint8[0] = result.labels
    labels_uv_uint8[1:] = (result.uv * 255).clamp(0, 255).byte()
    return DensePoseChartResultQuantized(labels_uv_uint8=labels_uv_uint8)


def compress_quantized_densepose_chart_result(
    result: DensePoseChartResultQuantized,
) -> DensePoseChartResultCompressed:
    """
    Compresses quantized DensePose chart-based result

    Args:
        result (DensePoseChartResultQuantized): quantized DensePose chart-based result
    Return:
        Compressed DensePose chart-based result (DensePoseChartResultCompressed)
    """
    import base64
    import numpy as np
    from io import BytesIO
    from PIL import Image

    labels_uv_uint8_np_chw = result.labels_uv_uint8.cpu().numpy()
    labels_uv_uint8_np_hwc = np.moveaxis(labels_uv_uint8_np_chw, 0, -1)
    im = Image.fromarray(labels_uv_uint8_np_hwc)
    fstream = BytesIO()
    im.save(fstream, format="png", optimize=True)
    labels_uv_str = base64.encodebytes(fstream.getvalue()).decode()
    shape_chw = labels_uv_uint8_np_chw.shape
    return DensePoseChartResultCompressed(labels_uv_str=labels_uv_str, shape_chw=shape_chw)


def decompress_compressed_densepose_chart_result(
    result: DensePoseChartResultCompressed,
) -> DensePoseChartResultQuantized:
    """
    Decompresses DensePose chart-based result encoded into a base64 string

    Args:
        result (DensePoseChartResultCompressed): compressed DensePose chart result
    Return:
        Quantized DensePose chart-based result (DensePoseChartResultQuantized)
    """
    import base64
    import numpy as np
    from io import BytesIO
    from PIL import Image

    fstream = BytesIO(base64.decodebytes(result.labels_uv_str.encode()))
    im = Image.open(fstream)
    labels_uv_uint8_np_chw = np.moveaxis(np.array(im, dtype=np.uint8), -1, 0)
    return DensePoseChartResultQuantized(
        labels_uv_uint8=torch.from_numpy(labels_uv_uint8_np_chw.reshape(result.shape_chw))
    )