Spaces:
Paused
Paused
File size: 7,883 Bytes
2945355 075752f 30b0683 0aa3e03 0027dc5 2945355 5578821 2945355 30b0683 2945355 5578821 8af9162 5578821 8af9162 4264aae 2945355 8af9162 0027dc5 8af9162 0027dc5 8af9162 0027dc5 2945355 0aa3e03 8af9162 0aa3e03 2945355 0aa3e03 2945355 4f13edc 8af9162 4f13edc 5578821 4f13edc 8af9162 4f13edc 8af9162 5578821 8af9162 4f13edc 8af9162 4f13edc 5578821 4f13edc 8af9162 b504d5b 8af9162 2945355 8af9162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import subprocess
import os
import cv2
from huggingface_hub import hf_hub_download
import glob
from datetime import datetime
is_shared_ui = True if "fffiloni/X-Portrait" in os.environ['SPACE_ID'] else False
# Ensure 'checkpoint' directory exists
os.makedirs("checkpoint", exist_ok=True)
hf_hub_download(
repo_id="fffiloni/X-Portrait",
filename="model_state-415001.th",
local_dir="checkpoint"
)
def trim_video(video_path, output_dir="trimmed_videos", max_duration=2):
# Create output directory if it does not exist
os.makedirs(output_dir, exist_ok=True)
# Generate a timestamp for the output filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_path = os.path.join(output_dir, f"trimmed_video_{timestamp}.mp4")
# Load the video
with VideoFileClip(video_path) as video:
# Check the duration of the video
if video.duration > max_duration:
# Trim the video to the first max_duration seconds
trimmed_video = video.subclip(0, max_duration)
# Write the trimmed video to a file
trimmed_video.write_videofile(output_path, codec="libx264")
return output_path
else:
# If the video is within the duration, return the original path
return video_path
def extract_frames_with_labels(video_path, base_output_dir="frames"):
if is_shared_ui :
video_path = trim_video(video_path)
print("Path to the (trimmed) driving video:", video_path)
# Generate a timestamped folder name
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = os.path.join(base_output_dir, f"frames_{timestamp}")
# Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Open the video file
video_capture = cv2.VideoCapture(video_path)
if not video_capture.isOpened():
raise ValueError(f"Cannot open video file: {video_path}")
frame_data = []
frame_index = 0
# Loop through the video frames
while True:
ret, frame = video_capture.read()
if not ret:
break # Exit the loop if there are no frames left to read
# Zero-padded frame index for filename and label
frame_label = f"{frame_index:04}"
frame_filename = os.path.join(output_dir, f"frame_{frame_label}.jpg")
# Save the frame as a .jpg file
cv2.imwrite(frame_filename, frame)
# Append the tuple (filename, label) to the list
frame_data.append((frame_filename, frame_label))
# Increment frame index
frame_index += 1
# Release the video capture object
video_capture.release()
return frame_data
# Define a function to run your script with selected inputs
def run_xportrait(source_image, driving_video, seed, uc_scale, best_frame, out_frames, num_mix, ddim_steps):
# Create a unique output directory name based on current date and time
output_dir_base = "outputs"
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = os.path.join(output_dir_base, f"output_{timestamp}")
os.makedirs(output_dir, exist_ok=True)
model_config = "config/cldm_v15_appearance_pose_local_mm.yaml"
resume_dir = "checkpoint/model_state-415001.th"
# Construct the command
command = [
"python3", "core/test_xportrait.py",
"--model_config", model_config,
"--output_dir", output_dir,
"--resume_dir", resume_dir,
"--seed", str(seed),
"--uc_scale", str(uc_scale),
"--source_image", source_image,
"--driving_video", driving_video,
"--best_frame", str(best_frame),
"--out_frames", str(out_frames),
"--num_mix", str(num_mix),
"--ddim_steps", str(ddim_steps)
]
# Run the command
try:
subprocess.run(command, check=True)
# Find the generated video file in the output directory
video_files = glob.glob(os.path.join(output_dir, "*.mp4"))
print(video_files)
if video_files:
return f"Output video saved at: {video_files[0]}", video_files[0]
else:
return "No video file was found in the output directory.", None
except subprocess.CalledProcessError as e:
return f"An error occurred: {e}", None
# Set up Gradio interface
css="""
div#frames-gallery{
overflow: scroll!important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention")
gr.Markdown("On this shared UI, drinving video input will be trimmed to 2 seconds max. Duplicate this space for more controls.")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='https://github.com/bytedance/X-Portrait'>
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href='https://byteaigc.github.io/x-portrait/'>
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
with gr.Row():
source_image = gr.Image(label="Source Image", type="filepath")
driving_video = gr.Video(label="Driving Video")
with gr.Group():
with gr.Row():
best_frame = gr.Number(value=36, label="Best Frame", info="specify the frame index in the driving video where the head pose best matches the source image (note: precision of best_frame index might affect the final quality)")
out_frames = gr.Number(value=-1, label="Out Frames", info="number of generation frames")
with gr.Accordion("Driving video Frames"):
driving_frames = gr.Gallery(show_label=True, columns=6, height=512, elem_id="frames-gallery")
with gr.Row():
seed = gr.Number(value=999, label="Seed")
uc_scale = gr.Number(value=5, label="UC Scale")
with gr.Row():
num_mix = gr.Number(value=4, label="Number of Mix")
ddim_steps = gr.Number(value=30, label="DDIM Steps")
submit_btn = gr.Button("Submit")
with gr.Column():
video_output = gr.Video(label="Output Video")
status = gr.Textbox(label="status")
gr.Examples(
examples=[
["./assets/source_image.png", "./assets/driving_video.mp4"]
],
inputs=[source_image, driving_video]
)
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://huggingface.co/spaces/fffiloni/X-Portrait?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-xl-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
driving_video.upload(
fn = extract_frames_with_labels,
inputs = [driving_video],
outputs = [driving_frames],
queue = False
)
submit_btn.click(
fn = run_xportrait,
inputs = [source_image, driving_video, seed, uc_scale, best_frame, out_frames, num_mix, ddim_steps],
outputs = [status, video_output]
)
# Launch the Gradio app
demo.launch() |