Spaces:
Paused
Paused
Migrated from GitHub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- LICENSE.txt +201 -0
- ORIGINAL_README.md +70 -0
- assets/driving_video.mp4 +3 -0
- assets/source_image.png +0 -0
- assets/teaser/teaser.png +3 -0
- checkpoint/checkpoint_location +0 -0
- config/cldm_v15_appearance_pose_local_mm.yaml +130 -0
- core/test_xportrait.py +506 -0
- env_install.sh +2 -0
- model_lib/ControlNet/cldm/__pycache__/cldm.cpython-39.pyc +0 -0
- model_lib/ControlNet/cldm/__pycache__/model.cpython-39.pyc +0 -0
- model_lib/ControlNet/cldm/cldm.py +715 -0
- model_lib/ControlNet/cldm/model.py +28 -0
- model_lib/ControlNet/ldm/__pycache__/util.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/data/__init__.py +0 -0
- model_lib/ControlNet/ldm/data/util.py +24 -0
- model_lib/ControlNet/ldm/models/__pycache__/autoencoder.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/models/autoencoder.py +219 -0
- model_lib/ControlNet/ldm/models/diffusion/__init__.py +0 -0
- model_lib/ControlNet/ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/models/diffusion/ddim.py +763 -0
- model_lib/ControlNet/ldm/models/diffusion/ddpm.py +0 -0
- model_lib/ControlNet/ldm/models/diffusion/dpm_solver/__init__.py +1 -0
- model_lib/ControlNet/ldm/models/diffusion/dpm_solver/dpm_solver.py +1154 -0
- model_lib/ControlNet/ldm/models/diffusion/dpm_solver/sampler.py +87 -0
- model_lib/ControlNet/ldm/models/diffusion/plms.py +244 -0
- model_lib/ControlNet/ldm/models/diffusion/sampling_util.py +22 -0
- model_lib/ControlNet/ldm/modules/__pycache__/attention.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/modules/__pycache__/ema.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/modules/__pycache__/motion_module.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/modules/attention.py +386 -0
- model_lib/ControlNet/ldm/modules/diffusionmodules/__init__.py +0 -0
- model_lib/ControlNet/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/modules/diffusionmodules/__pycache__/model.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/modules/diffusionmodules/__pycache__/util.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/modules/diffusionmodules/model.py +859 -0
- model_lib/ControlNet/ldm/modules/diffusionmodules/openaimodel.py +1212 -0
- model_lib/ControlNet/ldm/modules/diffusionmodules/upscaling.py +81 -0
- model_lib/ControlNet/ldm/modules/diffusionmodules/util.py +305 -0
- model_lib/ControlNet/ldm/modules/distributions/__init__.py +0 -0
- model_lib/ControlNet/ldm/modules/distributions/__pycache__/__init__.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/modules/distributions/__pycache__/distributions.cpython-39.pyc +0 -0
- model_lib/ControlNet/ldm/modules/distributions/distributions.py +92 -0
- model_lib/ControlNet/ldm/modules/ema.py +80 -0
- model_lib/ControlNet/ldm/modules/encoders/__init__.py +0 -0
- model_lib/ControlNet/ldm/modules/encoders/__pycache__/__init__.cpython-39.pyc +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/driving_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/teaser/teaser.png filter=lfs diff=lfs merge=lfs -text
|
LICENSE.txt
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
ORIGINAL_README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- # magic-edit.github.io -->
|
2 |
+
|
3 |
+
<p align="center">
|
4 |
+
|
5 |
+
<h2 align="center">X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention</h2>
|
6 |
+
<p align="center">
|
7 |
+
<a href="https://scholar.google.com/citations?user=FV0eXhQAAAAJ&hl=en">You Xie</a>,
|
8 |
+
<a href="https://hongyixu37.github.io/homepage/">Hongyi Xu</a>,
|
9 |
+
<a href="https://guoxiansong.github.io/homepage/index.html">Guoxian Song</a>,
|
10 |
+
<a href="https://chaowang.info/">Chao Wang</a>,
|
11 |
+
<a href="https://seasonsh.github.io/">Yichun Shi</a>,
|
12 |
+
<a href="http://linjieluo.com/">Linjie Luo</a>
|
13 |
+
<br>
|
14 |
+
<b> ByteDance Inc. </b>
|
15 |
+
<br>
|
16 |
+
<br>
|
17 |
+
<a href="https://arxiv.org/abs/2403.15931"><img src='https://img.shields.io/badge/arXiv-X--Portrait-red' alt='Paper PDF'></a>
|
18 |
+
<a href='https://byteaigc.github.io/x-portrait/'><img src='https://img.shields.io/badge/Project_Page-X--Portrait-green' alt='Project Page'></a>
|
19 |
+
<a href='https://youtu.be/VGxt5XghRdw'>
|
20 |
+
<img src='https://img.shields.io/badge/YouTube-X--Portrait-rgb(255, 0, 0)' alt='Youtube'></a>
|
21 |
+
<br>
|
22 |
+
</p>
|
23 |
+
|
24 |
+
<table align="center">
|
25 |
+
<tr>
|
26 |
+
<td>
|
27 |
+
<img src="assets/teaser/teaser.png">
|
28 |
+
</td>
|
29 |
+
</tr>
|
30 |
+
</table>
|
31 |
+
|
32 |
+
This repository contains the video generation code of SIGGRAPH 2024 paper [X-Portrait](https://arxiv.org/pdf/2403.15931).
|
33 |
+
|
34 |
+
## Installation
|
35 |
+
Note: Python 3.9 and Cuda 11.8 are required.
|
36 |
+
```shell
|
37 |
+
bash env_install.sh
|
38 |
+
```
|
39 |
+
|
40 |
+
## Model
|
41 |
+
Please download pre-trained model from [here](https://drive.google.com/drive/folders/1Bq0n-w1VT5l99CoaVg02hFpqE5eGLo9O?usp=sharing), and save it under "checkpoint/"
|
42 |
+
|
43 |
+
## Testing
|
44 |
+
```shell
|
45 |
+
bash scripts/test_xportrait.sh
|
46 |
+
```
|
47 |
+
parameters:
|
48 |
+
**model_config**: config file of the corresponding model
|
49 |
+
**output_dir**: output path for generated video
|
50 |
+
**source_image**: path of source image
|
51 |
+
**driving_video**: path of driving video
|
52 |
+
**best_frame**: specify the frame index in the driving video where the head pose best matches the source image (note: precision of best_frame index might affect the final quality)
|
53 |
+
**out_frames**: number of generation frames
|
54 |
+
**num_mix**: number of overlapping frames when applying prompt travelling during inference
|
55 |
+
**ddim_steps**: number of inference steps (e.g., 30 steps for ddim)
|
56 |
+
|
57 |
+
## Performance Boost
|
58 |
+
**efficiency**: Our model is compatible with LCM LoRA (https://huggingface.co/latent-consistency/lcm-lora-sdv1-5), which helps reduce the number of inference steps.
|
59 |
+
**expressiveness**: Expressiveness of the results could be boosted if results of other face reenactment approaches, e.g., face vid2vid, could be provided via parameter "--initial_facevid2vid_results".
|
60 |
+
|
61 |
+
## 🎓 Citation
|
62 |
+
If you find this codebase useful for your research, please use the following entry.
|
63 |
+
```BibTeX
|
64 |
+
@inproceedings{xie2024x,
|
65 |
+
title={X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention},
|
66 |
+
author={Xie, You and Xu, Hongyi and Song, Guoxian and Wang, Chao and Shi, Yichun and Luo, Linjie},
|
67 |
+
journal={arXiv preprint arXiv:2403.15931},
|
68 |
+
year={2024}
|
69 |
+
}
|
70 |
+
```
|
assets/driving_video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:030c10c861e9fd4f6395eede5e9d4005dafc3fa56569e6a7167337b1b3675c08
|
3 |
+
size 3839556
|
assets/source_image.png
ADDED
assets/teaser/teaser.png
ADDED
Git LFS Details
|
checkpoint/checkpoint_location
ADDED
File without changes
|
config/cldm_v15_appearance_pose_local_mm.yaml
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: model_lib.ControlNet.cldm.cldm.ControlLDMReferenceOnly_Temporal_Pose_Local
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
num_timesteps_cond: 1
|
7 |
+
log_every_t: 200
|
8 |
+
timesteps: 1000
|
9 |
+
first_stage_key: "jpg"
|
10 |
+
cond_stage_key: "txt"
|
11 |
+
control_key: "hint"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
only_mid_control: False
|
20 |
+
|
21 |
+
appearance_control_stage_config:
|
22 |
+
target: model_lib.ControlNet.cldm.cldm.ControlNetReferenceOnly
|
23 |
+
params:
|
24 |
+
image_size: 32 # unused
|
25 |
+
in_channels: 4
|
26 |
+
hint_channels: 3
|
27 |
+
out_channels: 4
|
28 |
+
model_channels: 320
|
29 |
+
attention_resolutions: [ 4, 2, 1 ]
|
30 |
+
num_res_blocks: 2
|
31 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
32 |
+
num_heads: 8
|
33 |
+
use_spatial_transformer: True
|
34 |
+
transformer_depth: 1
|
35 |
+
context_dim: 768
|
36 |
+
use_checkpoint: True
|
37 |
+
legacy: False
|
38 |
+
|
39 |
+
pose_control_stage_config:
|
40 |
+
target: model_lib.ControlNet.cldm.cldm.ControlNet
|
41 |
+
params:
|
42 |
+
image_size: 32 # unused
|
43 |
+
in_channels: 4
|
44 |
+
hint_channels: 3
|
45 |
+
model_channels: 320
|
46 |
+
attention_resolutions: [ 4, 2, 1 ]
|
47 |
+
num_res_blocks: 2
|
48 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
49 |
+
num_heads: 8
|
50 |
+
use_spatial_transformer: True
|
51 |
+
transformer_depth: 1
|
52 |
+
context_dim: 768
|
53 |
+
use_checkpoint: True
|
54 |
+
legacy: False
|
55 |
+
|
56 |
+
local_pose_control_stage_config:
|
57 |
+
target: model_lib.ControlNet.cldm.cldm.ControlNet
|
58 |
+
params:
|
59 |
+
image_size: 32 # unused
|
60 |
+
in_channels: 4
|
61 |
+
hint_channels: 3
|
62 |
+
model_channels: 320
|
63 |
+
attention_resolutions: [ 4, 2, 1 ]
|
64 |
+
num_res_blocks: 2
|
65 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
66 |
+
num_heads: 8
|
67 |
+
use_spatial_transformer: True
|
68 |
+
transformer_depth: 1
|
69 |
+
context_dim: 768
|
70 |
+
use_checkpoint: True
|
71 |
+
legacy: False
|
72 |
+
|
73 |
+
unet_config:
|
74 |
+
target: model_lib.ControlNet.cldm.cldm.ControlledUnetModelAttn_Temporal_Pose_Local
|
75 |
+
params:
|
76 |
+
image_size: 32 # unused
|
77 |
+
in_channels: 4
|
78 |
+
out_channels: 4
|
79 |
+
model_channels: 320
|
80 |
+
attention_resolutions: [ 4, 2, 1 ]
|
81 |
+
num_res_blocks: 2
|
82 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
83 |
+
num_heads: 8
|
84 |
+
use_spatial_transformer: True
|
85 |
+
transformer_depth: 1
|
86 |
+
context_dim: 768
|
87 |
+
use_checkpoint: True
|
88 |
+
legacy: False
|
89 |
+
|
90 |
+
unet_additional_kwargs:
|
91 |
+
use_motion_module : true
|
92 |
+
motion_module_resolutions : [ 1,2,4,8 ]
|
93 |
+
unet_use_cross_frame_attention : false
|
94 |
+
unet_use_temporal_attention : false
|
95 |
+
|
96 |
+
motion_module_type: Vanilla
|
97 |
+
motion_module_kwargs:
|
98 |
+
num_attention_heads : 8
|
99 |
+
num_transformer_block : 1
|
100 |
+
attention_block_types : [ "Temporal_Self", "Temporal_Self" ]
|
101 |
+
temporal_position_encoding : true
|
102 |
+
temporal_position_encoding_max_len : 24
|
103 |
+
temporal_attention_dim_div : 1
|
104 |
+
zero_initialize : true
|
105 |
+
|
106 |
+
first_stage_config:
|
107 |
+
target: model_lib.ControlNet.ldm.models.autoencoder.AutoencoderKL
|
108 |
+
params:
|
109 |
+
embed_dim: 4
|
110 |
+
monitor: val/rec_loss
|
111 |
+
ddconfig:
|
112 |
+
double_z: true
|
113 |
+
z_channels: 4
|
114 |
+
resolution: 256
|
115 |
+
in_channels: 3
|
116 |
+
out_ch: 3
|
117 |
+
ch: 128
|
118 |
+
ch_mult:
|
119 |
+
- 1
|
120 |
+
- 2
|
121 |
+
- 4
|
122 |
+
- 4
|
123 |
+
num_res_blocks: 2
|
124 |
+
attn_resolutions: []
|
125 |
+
dropout: 0.0
|
126 |
+
lossconfig:
|
127 |
+
target: torch.nn.Identity
|
128 |
+
|
129 |
+
cond_stage_config:
|
130 |
+
target: model_lib.ControlNet.ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
core/test_xportrait.py
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# *************************************************************************
|
2 |
+
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
|
3 |
+
# difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
|
4 |
+
# ytedance Inc..
|
5 |
+
# *************************************************************************
|
6 |
+
import os
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
# torch
|
10 |
+
import torch
|
11 |
+
from ema_pytorch import EMA
|
12 |
+
from einops import rearrange
|
13 |
+
import cv2
|
14 |
+
# utils
|
15 |
+
from utils.utils import set_seed, count_param, print_peak_memory
|
16 |
+
# model
|
17 |
+
import imageio
|
18 |
+
from model_lib.ControlNet.cldm.model import create_model
|
19 |
+
import copy
|
20 |
+
import glob
|
21 |
+
import imageio
|
22 |
+
from skimage.transform import resize
|
23 |
+
from skimage import img_as_ubyte
|
24 |
+
import face_alignment
|
25 |
+
import sys
|
26 |
+
from decord import VideoReader
|
27 |
+
from decord import cpu, gpu
|
28 |
+
|
29 |
+
TORCH_VERSION = torch.__version__.split(".")[0]
|
30 |
+
FP16_DTYPE = torch.float16
|
31 |
+
print(f"TORCH_VERSION={TORCH_VERSION} FP16_DTYPE={FP16_DTYPE}")
|
32 |
+
|
33 |
+
def extract_local_feature_from_single_img(img, fa, remove_local=False, real_tocrop=None, target_res = 512):
|
34 |
+
device = img.device
|
35 |
+
pred = img.permute([1, 2, 0]).detach().cpu().numpy()
|
36 |
+
|
37 |
+
pred_lmks = img_as_ubyte(resize(pred, (256, 256)))
|
38 |
+
|
39 |
+
try:
|
40 |
+
lmks = fa.get_landmarks_from_image(pred_lmks, return_landmark_score=False)[0]
|
41 |
+
except:
|
42 |
+
print ('undetected faces!!')
|
43 |
+
if real_tocrop is None:
|
44 |
+
return torch.zeros_like(img) * 2 - 1., [196,196,320,320]
|
45 |
+
return torch.zeros_like(img), [196,196,320,320]
|
46 |
+
|
47 |
+
halfedge = 32
|
48 |
+
left_eye_center = (np.clip(np.round(np.mean(lmks[43:48], axis=0)), halfedge, 255-halfedge) * (target_res / 256)).astype(np.int32)
|
49 |
+
right_eye_center = (np.clip(np.round(np.mean(lmks[37:42], axis=0)), halfedge, 255-halfedge) * (target_res / 256)).astype(np.int32)
|
50 |
+
mouth_center = (np.clip(np.round(np.mean(lmks[49:68], axis=0)), halfedge, 255-halfedge) * (target_res / 256)).astype(np.int32)
|
51 |
+
|
52 |
+
if real_tocrop is not None:
|
53 |
+
pred = real_tocrop.permute([1, 2, 0]).detach().cpu().numpy()
|
54 |
+
|
55 |
+
half_size = target_res // 8 #64
|
56 |
+
if remove_local:
|
57 |
+
local_viz = pred
|
58 |
+
local_viz[left_eye_center[1] - half_size : left_eye_center[1] + half_size, left_eye_center[0] - half_size : left_eye_center[0] + half_size] = 0
|
59 |
+
local_viz[right_eye_center[1] - half_size : right_eye_center[1] + half_size, right_eye_center[0] - half_size : right_eye_center[0] + half_size] = 0
|
60 |
+
local_viz[mouth_center[1] - half_size : mouth_center[1] + half_size, mouth_center[0] - half_size : mouth_center[0] + half_size] = 0
|
61 |
+
else:
|
62 |
+
local_viz = np.zeros_like(pred)
|
63 |
+
local_viz[left_eye_center[1] - half_size : left_eye_center[1] + half_size, left_eye_center[0] - half_size : left_eye_center[0] + half_size] = pred[left_eye_center[1] - half_size : left_eye_center[1] + half_size, left_eye_center[0] - half_size : left_eye_center[0] + half_size]
|
64 |
+
local_viz[right_eye_center[1] - half_size : right_eye_center[1] + half_size, right_eye_center[0] - half_size : right_eye_center[0] + half_size] = pred[right_eye_center[1] - half_size : right_eye_center[1] + half_size, right_eye_center[0] - half_size : right_eye_center[0] + half_size]
|
65 |
+
local_viz[mouth_center[1] - half_size : mouth_center[1] + half_size, mouth_center[0] - half_size : mouth_center[0] + half_size] = pred[mouth_center[1] - half_size : mouth_center[1] + half_size, mouth_center[0] - half_size : mouth_center[0] + half_size]
|
66 |
+
|
67 |
+
local_viz = torch.from_numpy(local_viz).to(device)
|
68 |
+
local_viz = local_viz.permute([2, 0, 1])
|
69 |
+
if real_tocrop is None:
|
70 |
+
local_viz = local_viz * 2 - 1.
|
71 |
+
return local_viz
|
72 |
+
|
73 |
+
def find_best_frame_byheadpose_fa(source_image, driving_video, fa):
|
74 |
+
input = img_as_ubyte(resize(source_image, (256, 256)))
|
75 |
+
try:
|
76 |
+
src_pose_array = fa.get_landmarks_from_image(input, return_landmark_score=False)[0]
|
77 |
+
except:
|
78 |
+
print ('undetected faces in the source image!!')
|
79 |
+
src_pose_array = np.zeros((68,2))
|
80 |
+
if len(src_pose_array) == 0:
|
81 |
+
return 0
|
82 |
+
min_diff = 1e8
|
83 |
+
best_frame = 0
|
84 |
+
|
85 |
+
for i in range(len(driving_video)):
|
86 |
+
frame = img_as_ubyte(resize(driving_video[i], (256, 256)))
|
87 |
+
try:
|
88 |
+
drv_pose_array = fa.get_landmarks_from_image(frame, return_landmark_score=False)[0]
|
89 |
+
except:
|
90 |
+
print ('undetected faces in the %d-th driving image!!'%i)
|
91 |
+
drv_pose_array = np.zeros((68,2))
|
92 |
+
diff = np.sum(np.abs(np.array(src_pose_array)-np.array(drv_pose_array)))
|
93 |
+
if diff < min_diff:
|
94 |
+
best_frame = i
|
95 |
+
min_diff = diff
|
96 |
+
|
97 |
+
return best_frame
|
98 |
+
|
99 |
+
def adjust_driving_video_to_src_image(source_image, driving_video, fa, nm_res, nmd_res, best_frame=-1):
|
100 |
+
if best_frame == -2:
|
101 |
+
return [resize(frame, (nm_res, nm_res)) for frame in driving_video], [resize(frame, (nmd_res, nmd_res)) for frame in driving_video]
|
102 |
+
src = img_as_ubyte(resize(source_image[..., :3], (256, 256)))
|
103 |
+
if best_frame >= len(source_image):
|
104 |
+
raise ValueError(
|
105 |
+
f"please specify one frame in driving video of which the pose match best with the pose of source image"
|
106 |
+
)
|
107 |
+
|
108 |
+
if best_frame < 0:
|
109 |
+
best_frame = find_best_frame_byheadpose_fa(src, driving_video, fa)
|
110 |
+
|
111 |
+
print ('Best Frame: %d' % best_frame)
|
112 |
+
driving = img_as_ubyte(resize(driving_video[best_frame], (256, 256)))
|
113 |
+
|
114 |
+
src_lmks = fa.get_landmarks_from_image(src, return_landmark_score=False)
|
115 |
+
drv_lmks = fa.get_landmarks_from_image(driving, return_landmark_score=False)
|
116 |
+
|
117 |
+
if (src_lmks is None) or (drv_lmks is None):
|
118 |
+
return [resize(frame, (nm_res, nm_res)) for frame in driving_video], [resize(frame, (nmd_res, nmd_res)) for frame in driving_video]
|
119 |
+
src_lmks = src_lmks[0]
|
120 |
+
drv_lmks = drv_lmks[0]
|
121 |
+
src_centers = np.mean(src_lmks, axis=0)
|
122 |
+
drv_centers = np.mean(drv_lmks, axis=0)
|
123 |
+
edge_src = (np.max(src_lmks, axis=0) - np.min(src_lmks, axis=0))*0.5
|
124 |
+
edge_drv = (np.max(drv_lmks, axis=0) - np.min(drv_lmks, axis=0))*0.5
|
125 |
+
|
126 |
+
#matching three points
|
127 |
+
src_point=np.array([[src_centers[0]-edge_src[0],src_centers[1]-edge_src[1]],[src_centers[0]+edge_src[0],src_centers[1]-edge_src[1]],[src_centers[0]-edge_src[0],src_centers[1]+edge_src[1]],[src_centers[0]+edge_src[0],src_centers[1]+edge_src[1]]]).astype(np.float32)
|
128 |
+
dst_point=np.array([[drv_centers[0]-edge_drv[0],drv_centers[1]-edge_drv[1]],[drv_centers[0]+edge_drv[0],drv_centers[1]-edge_drv[1]],[drv_centers[0]-edge_drv[0],drv_centers[1]+edge_drv[1]],[drv_centers[0]+edge_drv[0],drv_centers[1]+edge_drv[1]]]).astype(np.float32)
|
129 |
+
|
130 |
+
adjusted_driving_video = []
|
131 |
+
adjusted_driving_video_hd = []
|
132 |
+
|
133 |
+
for frame in driving_video:
|
134 |
+
frame_ld = resize(frame, (nm_res, nm_res))
|
135 |
+
frame_hd = resize(frame, (nmd_res, nmd_res))
|
136 |
+
zoomed=cv2.warpAffine(frame_ld, cv2.getAffineTransform(dst_point[:3], src_point[:3]), (nm_res, nm_res))
|
137 |
+
zoomed_hd=cv2.warpAffine(frame_hd, cv2.getAffineTransform(dst_point[:3] * 2, src_point[:3] * 2), (nmd_res, nmd_res))
|
138 |
+
adjusted_driving_video.append(zoomed)
|
139 |
+
adjusted_driving_video_hd.append(zoomed_hd)
|
140 |
+
|
141 |
+
return adjusted_driving_video, adjusted_driving_video_hd
|
142 |
+
|
143 |
+
def x_portrait_data_prep(source_image_path, driving_video_path, device, best_frame_id=0, start_idx = 0, num_frames=0, skip=1, output_local=False, more_source_image_pattern="", target_resolution = 512):
|
144 |
+
source_image = imageio.imread(source_image_path)
|
145 |
+
if '.mp4' in driving_video_path:
|
146 |
+
reader = imageio.get_reader(driving_video_path)
|
147 |
+
fps = reader.get_meta_data()['fps']
|
148 |
+
driving_video = []
|
149 |
+
try:
|
150 |
+
for im in reader:
|
151 |
+
driving_video.append(im)
|
152 |
+
except RuntimeError:
|
153 |
+
pass
|
154 |
+
reader.close()
|
155 |
+
else:
|
156 |
+
driving_video = [imageio.imread(driving_video_path)[...,:3]]
|
157 |
+
fps = 1
|
158 |
+
|
159 |
+
nmd_res = target_resolution
|
160 |
+
nm_res = 256
|
161 |
+
source_image_hd = resize(source_image, (nmd_res, nmd_res))[..., :3]
|
162 |
+
|
163 |
+
if more_source_image_pattern:
|
164 |
+
more_source_paths = glob.glob(more_source_image_pattern)
|
165 |
+
more_sources_hd = []
|
166 |
+
for more_source_path in more_source_paths:
|
167 |
+
more_source_image = imageio.imread(more_source_path)
|
168 |
+
more_source_image_hd = resize(more_source_image, (nmd_res, nmd_res))[..., :3]
|
169 |
+
more_source_hd = torch.tensor(more_source_image_hd[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
|
170 |
+
more_source_hd = more_source_hd.to(device)
|
171 |
+
more_sources_hd.append(more_source_hd)
|
172 |
+
more_sources_hd = torch.stack(more_sources_hd, dim = 1)
|
173 |
+
else:
|
174 |
+
more_sources_hd = None
|
175 |
+
|
176 |
+
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=True, device='cuda')
|
177 |
+
|
178 |
+
driving_video, driving_video_hd = adjust_driving_video_to_src_image(source_image, driving_video, fa, nm_res, nmd_res, best_frame_id)
|
179 |
+
|
180 |
+
if num_frames == 0:
|
181 |
+
end_idx = len(driving_video)
|
182 |
+
else:
|
183 |
+
num_frames = min(len(driving_video), num_frames)
|
184 |
+
end_idx = start_idx + num_frames * skip
|
185 |
+
|
186 |
+
driving_video = driving_video[start_idx:end_idx][::skip]
|
187 |
+
driving_video_hd = driving_video_hd[start_idx:end_idx][::skip]
|
188 |
+
num_frames = len(driving_video)
|
189 |
+
|
190 |
+
with torch.no_grad():
|
191 |
+
real_source_hd = torch.tensor(source_image_hd[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
|
192 |
+
real_source_hd = real_source_hd.to(device)
|
193 |
+
|
194 |
+
driving_hd = torch.tensor(np.array(driving_video_hd).astype(np.float32)).permute(0, 3, 1, 2).to(device)
|
195 |
+
|
196 |
+
local_features = []
|
197 |
+
raw_drivings=[]
|
198 |
+
|
199 |
+
for frame_idx in range(0, num_frames):
|
200 |
+
raw_drivings.append(driving_hd[frame_idx:frame_idx+1] * 2 - 1.)
|
201 |
+
if output_local:
|
202 |
+
local_feature_img = extract_local_feature_from_single_img(driving_hd[frame_idx], fa,target_res=nmd_res)
|
203 |
+
local_features.append(local_feature_img)
|
204 |
+
|
205 |
+
|
206 |
+
batch_data = {}
|
207 |
+
batch_data['fps'] = fps
|
208 |
+
real_source_hd = real_source_hd * 2 - 1
|
209 |
+
batch_data['sources'] = real_source_hd[:, None, :, :, :].repeat([num_frames, 1, 1, 1, 1])
|
210 |
+
if more_sources_hd is not None:
|
211 |
+
more_sources_hd = more_sources_hd * 2 - 1
|
212 |
+
batch_data['more_sources'] = more_sources_hd.repeat([num_frames, 1, 1, 1, 1])
|
213 |
+
|
214 |
+
raw_drivings = torch.stack(raw_drivings, dim = 0)
|
215 |
+
batch_data['conditions'] = raw_drivings
|
216 |
+
if output_local:
|
217 |
+
batch_data['local'] = torch.stack(local_features, dim = 0)
|
218 |
+
|
219 |
+
return batch_data
|
220 |
+
|
221 |
+
# You can now use the modified state_dict without the deleted keys
|
222 |
+
def load_state_dict(model, ckpt_path, reinit_hint_block=False, strict=True, map_location="cpu"):
|
223 |
+
print(f"Loading model state dict from {ckpt_path} ...")
|
224 |
+
state_dict = torch.load(ckpt_path, map_location=map_location)
|
225 |
+
state_dict = state_dict.get('state_dict', state_dict)
|
226 |
+
if reinit_hint_block:
|
227 |
+
print("Ignoring hint block parameters from checkpoint!")
|
228 |
+
for k in list(state_dict.keys()):
|
229 |
+
if k.startswith("control_model.input_hint_block"):
|
230 |
+
state_dict.pop(k)
|
231 |
+
model.load_state_dict(state_dict, strict=strict)
|
232 |
+
del state_dict
|
233 |
+
|
234 |
+
def get_cond_control(args, batch_data, control_type, device, start, end, model=None, batch_size=None, train=True, key=0):
|
235 |
+
|
236 |
+
control_type = copy.deepcopy(control_type)
|
237 |
+
vae_bs = 16
|
238 |
+
if control_type == "appearance_pose_local_mm":
|
239 |
+
src = batch_data['sources'][start:end, key].cuda()
|
240 |
+
c_cat_list = batch_data['conditions'][start:end].cuda()
|
241 |
+
cond_image = []
|
242 |
+
for k in range(0, end-start, vae_bs):
|
243 |
+
cond_image.append(model.get_first_stage_encoding(model.encode_first_stage(src[k:k+vae_bs])))
|
244 |
+
cond_image = torch.concat(cond_image, dim=0)
|
245 |
+
cond_img_cat = cond_image
|
246 |
+
p_local = batch_data['local'][start:end].cuda()
|
247 |
+
print ('Total frames:{}'.format(cond_img_cat.shape))
|
248 |
+
more_cond_imgs = []
|
249 |
+
if 'more_sources' in batch_data:
|
250 |
+
num_additional_cond_imgs = batch_data['more_sources'].shape[1]
|
251 |
+
for i in range(num_additional_cond_imgs):
|
252 |
+
m_cond_img = batch_data['more_sources'][start:end, i]
|
253 |
+
m_cond_img = model.get_first_stage_encoding(model.encode_first_stage(m_cond_img))
|
254 |
+
more_cond_imgs.append([m_cond_img.to(device)])
|
255 |
+
|
256 |
+
return [cond_img_cat.to(device), c_cat_list, p_local, more_cond_imgs]
|
257 |
+
else:
|
258 |
+
raise NotImplementedError(f"cond_type={control_type} not supported!")
|
259 |
+
|
260 |
+
def visualize_mm(args, name, batch_data, infer_model, nSample, local_image_dir, num_mix=4, preset_output_name=''):
|
261 |
+
driving_video_name = os.path.basename(batch_data['video_name']).split('.')[0]
|
262 |
+
source_name = os.path.basename(batch_data['source_name']).split('.')[0]
|
263 |
+
|
264 |
+
if not os.path.exists(local_image_dir):
|
265 |
+
os.mkdir(local_image_dir)
|
266 |
+
|
267 |
+
uc_scale = args.uc_scale
|
268 |
+
if preset_output_name:
|
269 |
+
preset_output_name = preset_output_name.split('.')[0]+'.mp4'
|
270 |
+
output_path = f"{local_image_dir}/{preset_output_name}"
|
271 |
+
else:
|
272 |
+
output_path = f"{local_image_dir}/{name}_{args.control_type}_uc{uc_scale}_{source_name}_by_{driving_video_name}_mix{num_mix}.mp4"
|
273 |
+
|
274 |
+
infer_model.eval()
|
275 |
+
|
276 |
+
gene_img_list = []
|
277 |
+
|
278 |
+
_, _, ch, h, w = batch_data['sources'].shape
|
279 |
+
|
280 |
+
vae_bs = 16
|
281 |
+
|
282 |
+
if args.initial_facevid2vid_results:
|
283 |
+
facevid2vid = []
|
284 |
+
facevid2vid_results = VideoReader(args.initial_facevid2vid_results, ctx=cpu(0))
|
285 |
+
for frame_id in range(len(facevid2vid_results)):
|
286 |
+
frame = cv2.resize(facevid2vid_results[frame_id].asnumpy(),(512,512)) / 255
|
287 |
+
facevid2vid.append(torch.from_numpy(frame * 2 - 1).permute(2,0,1))
|
288 |
+
cond = torch.stack(facevid2vid)[:nSample].float().to(args.device)
|
289 |
+
pre_noise=[]
|
290 |
+
for i in range(0, nSample, vae_bs):
|
291 |
+
pre_noise.append(infer_model.get_first_stage_encoding(infer_model.encode_first_stage(cond[i:i+vae_bs])))
|
292 |
+
pre_noise = torch.cat(pre_noise, dim=0)
|
293 |
+
pre_noise = infer_model.q_sample(x_start = pre_noise, t = torch.tensor([999]).to(pre_noise.device))
|
294 |
+
else:
|
295 |
+
cond = batch_data['sources'][:nSample].reshape([-1, ch, h, w])
|
296 |
+
pre_noise=[]
|
297 |
+
for i in range(0, nSample, vae_bs):
|
298 |
+
pre_noise.append(infer_model.get_first_stage_encoding(infer_model.encode_first_stage(cond[i:i+vae_bs])))
|
299 |
+
pre_noise = torch.cat(pre_noise, dim=0)
|
300 |
+
pre_noise = infer_model.q_sample(x_start = pre_noise, t = torch.tensor([999]).to(pre_noise.device))
|
301 |
+
|
302 |
+
text = ["" for _ in range(nSample)]
|
303 |
+
|
304 |
+
all_c_cat = get_cond_control(args, batch_data, args.control_type, args.device, start=0, end=nSample, model=infer_model, train=False)
|
305 |
+
cond_img_cat = [all_c_cat[0]]
|
306 |
+
pose_cond_list = [rearrange(all_c_cat[1], "b f c h w -> (b f) c h w")]
|
307 |
+
local_pose_cond_list = [all_c_cat[2]]
|
308 |
+
|
309 |
+
c_cross = infer_model.get_learned_conditioning(text)[:nSample]
|
310 |
+
uc_cross = infer_model.get_unconditional_conditioning(nSample)
|
311 |
+
|
312 |
+
c = {"c_crossattn": [c_cross], "image_control": cond_img_cat}
|
313 |
+
if "appearance_pose" in args.control_type:
|
314 |
+
c['c_concat'] = pose_cond_list
|
315 |
+
if "appearance_pose_local" in args.control_type:
|
316 |
+
c["local_c_concat"] = local_pose_cond_list
|
317 |
+
|
318 |
+
if len(all_c_cat) > 3 and len(all_c_cat[3]) > 0:
|
319 |
+
c['more_image_control'] = all_c_cat[3]
|
320 |
+
|
321 |
+
if args.control_mode == "controlnet_important":
|
322 |
+
uc = {"c_crossattn": [uc_cross]}
|
323 |
+
else:
|
324 |
+
uc = {"c_crossattn": [uc_cross], "image_control":cond_img_cat}
|
325 |
+
|
326 |
+
if "appearance_pose" in args.control_type:
|
327 |
+
uc['c_concat'] = [torch.zeros_like(pose_cond_list[0])]
|
328 |
+
|
329 |
+
if "appearance_pose_local" in args.control_type:
|
330 |
+
uc["local_c_concat"] = [torch.zeros_like(local_pose_cond_list[0])]
|
331 |
+
|
332 |
+
if len(all_c_cat) > 3 and len(all_c_cat[3]) > 0:
|
333 |
+
uc['more_image_control'] = all_c_cat[3]
|
334 |
+
|
335 |
+
if args.wonoise:
|
336 |
+
c['wonoise'] = True
|
337 |
+
uc['wonoise'] = True
|
338 |
+
else:
|
339 |
+
c['wonoise'] = False
|
340 |
+
uc['wonoise'] = False
|
341 |
+
|
342 |
+
noise = pre_noise.to(c_cross.device)
|
343 |
+
|
344 |
+
with torch.cuda.amp.autocast(enabled=args.use_fp16, dtype=FP16_DTYPE):
|
345 |
+
infer_model.to(args.device)
|
346 |
+
infer_model.eval()
|
347 |
+
|
348 |
+
gene_img, _ = infer_model.sample_log(cond=c,
|
349 |
+
batch_size=args.num_drivings, ddim=True,
|
350 |
+
ddim_steps=args.ddim_steps, eta=args.eta,
|
351 |
+
unconditional_guidance_scale=uc_scale,
|
352 |
+
unconditional_conditioning=uc,
|
353 |
+
inpaint=None,
|
354 |
+
x_T=noise,
|
355 |
+
num_overlap=num_mix,
|
356 |
+
)
|
357 |
+
|
358 |
+
for i in range(0, nSample, vae_bs):
|
359 |
+
gene_img_part = infer_model.decode_first_stage( gene_img[i:i+vae_bs] )
|
360 |
+
gene_img_list.append(gene_img_part.float().clamp(-1, 1).cpu())
|
361 |
+
|
362 |
+
_, c, h, w = gene_img_list[0].shape
|
363 |
+
|
364 |
+
cond_image = batch_data["conditions"].reshape([-1,c,h,w])[:nSample].cpu()
|
365 |
+
l_cond_image = batch_data["local"].reshape([-1,c,h,w])[:nSample].cpu()
|
366 |
+
orig_image = batch_data["sources"][:nSample, 0].cpu()
|
367 |
+
|
368 |
+
output_img = torch.cat(gene_img_list + [cond_image.cpu()]+[l_cond_image.cpu()]+[orig_image.cpu()]).float().clamp(-1,1).add(1).mul(0.5)
|
369 |
+
|
370 |
+
num_cols = 4
|
371 |
+
output_img = output_img.reshape([num_cols, 1, nSample, c, h, w]).permute([1, 0, 2, 3, 4,5])
|
372 |
+
|
373 |
+
output_img = output_img.permute([2, 3, 0, 4, 1, 5]).reshape([-1, c, h, num_cols * w])
|
374 |
+
output_img = torch.permute(output_img, [0, 2, 3, 1])
|
375 |
+
|
376 |
+
output_img = output_img.data.cpu().numpy()
|
377 |
+
output_img = img_as_ubyte(output_img)
|
378 |
+
imageio.mimsave(output_path, output_img[:,:,:512], fps=batch_data['fps'], quality=10, pixelformat='yuv420p', codec='libx264')
|
379 |
+
|
380 |
+
def main(args):
|
381 |
+
|
382 |
+
# ******************************
|
383 |
+
# initialize training
|
384 |
+
# ******************************
|
385 |
+
args.world_size = 1
|
386 |
+
args.local_rank = 0
|
387 |
+
args.rank = 0
|
388 |
+
args.device = torch.device("cuda", args.local_rank)
|
389 |
+
|
390 |
+
# set seed for reproducibility
|
391 |
+
set_seed(args.seed)
|
392 |
+
|
393 |
+
# ******************************
|
394 |
+
# create model
|
395 |
+
# ******************************
|
396 |
+
model = create_model(args.model_config).cpu()
|
397 |
+
model.sd_locked = args.sd_locked
|
398 |
+
model.only_mid_control = args.only_mid_control
|
399 |
+
model.to(args.local_rank)
|
400 |
+
if not os.path.exists(args.output_dir):
|
401 |
+
os.makedirs(args.output_dir)
|
402 |
+
if args.local_rank == 0:
|
403 |
+
print('Total base parameters {:.02f}M'.format(count_param([model])))
|
404 |
+
if args.ema_rate is not None and args.ema_rate > 0 and args.rank == 0:
|
405 |
+
print(f"Creating EMA model at ema_rate={args.ema_rate}")
|
406 |
+
model_ema = EMA(model, beta=args.ema_rate, update_after_step=0, update_every=1)
|
407 |
+
else:
|
408 |
+
model_ema = None
|
409 |
+
|
410 |
+
# ******************************
|
411 |
+
# load pre-trained models
|
412 |
+
# ******************************
|
413 |
+
if args.resume_dir is not None:
|
414 |
+
if args.local_rank == 0:
|
415 |
+
load_state_dict(model, args.resume_dir, strict=False)
|
416 |
+
else:
|
417 |
+
print('please privide the correct resume_dir!')
|
418 |
+
exit()
|
419 |
+
|
420 |
+
# ******************************
|
421 |
+
# create DDP model
|
422 |
+
# ******************************
|
423 |
+
if args.compile and TORCH_VERSION == "2":
|
424 |
+
model = torch.compile(model)
|
425 |
+
|
426 |
+
torch.cuda.set_device(args.local_rank)
|
427 |
+
print_peak_memory("Max memory allocated after creating DDP", args.local_rank)
|
428 |
+
infer_model = model.module if hasattr(model, "module") else model
|
429 |
+
|
430 |
+
with torch.no_grad():
|
431 |
+
driving_videos = glob.glob(args.driving_video)
|
432 |
+
for driving_video in driving_videos:
|
433 |
+
print ('working on {}'.format(os.path.basename(driving_video)))
|
434 |
+
infer_batch_data = x_portrait_data_prep(args.source_image, driving_video, args.device, args.best_frame, start_idx = args.start_idx, num_frames = args.out_frames, skip=args.skip, output_local=True)
|
435 |
+
infer_batch_data['video_name'] = os.path.basename(driving_video)
|
436 |
+
infer_batch_data['source_name'] = args.source_image
|
437 |
+
nSample = infer_batch_data['sources'].shape[0]
|
438 |
+
visualize_mm(args, "inference", infer_batch_data, infer_model, nSample=nSample, local_image_dir=args.output_dir, num_mix=args.num_mix)
|
439 |
+
|
440 |
+
|
441 |
+
if __name__ == "__main__":
|
442 |
+
|
443 |
+
str2bool = lambda arg: bool(int(arg))
|
444 |
+
parser = argparse.ArgumentParser(description='Control Net training')
|
445 |
+
## Model
|
446 |
+
parser.add_argument('--model_config', type=str, default="model_lib/ControlNet/models/cldm_v15_video_appearance.yaml",
|
447 |
+
help="The path of model config file")
|
448 |
+
parser.add_argument('--reinit_hint_block', action='store_true', default=False,
|
449 |
+
help="Re-initialize hint blocks for channel mis-match")
|
450 |
+
parser.add_argument('--sd_locked', type =str2bool, default=True,
|
451 |
+
help='Freeze parameters in original stable-diffusion decoder')
|
452 |
+
parser.add_argument('--only_mid_control', type =str2bool, default=False,
|
453 |
+
help='Only control middle blocks')
|
454 |
+
parser.add_argument('--control_type', type=str, default="appearance_pose_local_mm",
|
455 |
+
help='The type of conditioning')
|
456 |
+
parser.add_argument("--control_mode", type=str, default="controlnet_important",
|
457 |
+
help="Set controlnet is more important or balance.")
|
458 |
+
parser.add_argument('--wonoise', action='store_false', default=True,
|
459 |
+
help='Use with referenceonly, remove adding noise on reference image')
|
460 |
+
|
461 |
+
## Training
|
462 |
+
parser.add_argument("--local_rank", type=int, default=0)
|
463 |
+
parser.add_argument("--world_size", type=int, default=1)
|
464 |
+
parser.add_argument('--seed', type=int, default=42,
|
465 |
+
help='random seed for initialization')
|
466 |
+
parser.add_argument('--use_fp16', action='store_false', default=True,
|
467 |
+
help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit')
|
468 |
+
parser.add_argument('--compile', type=str2bool, default=False,
|
469 |
+
help='compile model (for torch 2)')
|
470 |
+
parser.add_argument('--eta', type = float, default = 0.0,
|
471 |
+
help='eta during DDIM Sampling')
|
472 |
+
parser.add_argument('--ema_rate', type = float, default = 0,
|
473 |
+
help='rate for ema')
|
474 |
+
## inference
|
475 |
+
parser.add_argument("--initial_facevid2vid_results", type=str, default=None,
|
476 |
+
help="facevid2vid results for noise initialization")
|
477 |
+
parser.add_argument('--ddim_steps', type = int, default = 1,
|
478 |
+
help='denoising steps')
|
479 |
+
parser.add_argument('--uc_scale', type = int, default = 5,
|
480 |
+
help='cfg')
|
481 |
+
parser.add_argument("--num_drivings", type = int, default = 16,
|
482 |
+
help="Number of driving images in a single sequence of video.")
|
483 |
+
parser.add_argument("--output_dir", type=str, default=None, required=True,
|
484 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
485 |
+
parser.add_argument("--resume_dir", type=str, default=None,
|
486 |
+
help="The resume directory where the model checkpoints will be loaded.")
|
487 |
+
parser.add_argument("--source_image", type=str, default="",
|
488 |
+
help="The source image for neural motion.")
|
489 |
+
parser.add_argument("--more_source_image_pattern", type=str, default="",
|
490 |
+
help="The source image for neural motion.")
|
491 |
+
parser.add_argument("--driving_video", type=str, default="",
|
492 |
+
help="The source image mask for neural motion.")
|
493 |
+
parser.add_argument('--best_frame', type=int, default=0,
|
494 |
+
help='best matching frame index')
|
495 |
+
parser.add_argument('--start_idx', type=int, default=0,
|
496 |
+
help='starting frame index')
|
497 |
+
parser.add_argument('--skip', type=int, default=1,
|
498 |
+
help='skip frame')
|
499 |
+
parser.add_argument('--num_mix', type=int, default=4,
|
500 |
+
help='num overlapping frames')
|
501 |
+
parser.add_argument('--out_frames', type=int, default=0,
|
502 |
+
help='num frames')
|
503 |
+
args = parser.parse_args()
|
504 |
+
|
505 |
+
main(args)
|
506 |
+
|
env_install.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pip install -r requirements.txt
|
2 |
+
sudo apt install python3-tk
|
model_lib/ControlNet/cldm/__pycache__/cldm.cpython-39.pyc
ADDED
Binary file (13.4 kB). View file
|
|
model_lib/ControlNet/cldm/__pycache__/model.cpython-39.pyc
ADDED
Binary file (1.18 kB). View file
|
|
model_lib/ControlNet/cldm/cldm.py
ADDED
@@ -0,0 +1,715 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from re import I
|
2 |
+
import torch
|
3 |
+
import torch as th
|
4 |
+
import torch.nn as nn
|
5 |
+
from model_lib.ControlNet.ldm.modules.diffusionmodules.util import (
|
6 |
+
conv_nd,
|
7 |
+
linear,
|
8 |
+
zero_module,
|
9 |
+
timestep_embedding,
|
10 |
+
)
|
11 |
+
|
12 |
+
from model_lib.ControlNet.ldm.modules.attention import SpatialTransformer
|
13 |
+
from model_lib.ControlNet.ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock,Upsample, UNetModel_Temporal
|
14 |
+
from model_lib.ControlNet.ldm.models.diffusion.ddpm import LatentDiffusionReferenceOnly
|
15 |
+
from model_lib.ControlNet.ldm.util import exists, instantiate_from_config
|
16 |
+
|
17 |
+
## TODO: here UNet
|
18 |
+
class ControlledUnetModelAttn_Temporal_Pose_Local(UNetModel_Temporal):
|
19 |
+
def forward(self, x, timesteps=None, context=None, control=None, pose_control=None,local_pose_control=None,only_mid_control=False, attention_mode=None,uc=False, **kwargs):
|
20 |
+
hs = []
|
21 |
+
bank_attn = control
|
22 |
+
attn_index = 0
|
23 |
+
|
24 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
25 |
+
emb = self.time_embed(t_emb)
|
26 |
+
h = x.type(self.dtype)
|
27 |
+
num_input_motion_module = 0
|
28 |
+
if uc:
|
29 |
+
for i, module in enumerate(self.input_blocks):
|
30 |
+
if i in [1,2,4,5,7,8,10,11]:
|
31 |
+
motion_module = self.input_blocks_motion_module[num_input_motion_module]
|
32 |
+
h = module(h, emb, context,uc=uc) # Attn here
|
33 |
+
h = motion_module(h, emb, context)
|
34 |
+
num_input_motion_module += 1
|
35 |
+
else:
|
36 |
+
h = module(h, emb, context,uc=uc) # Attn here
|
37 |
+
hs.append(h)
|
38 |
+
|
39 |
+
h = self.middle_block(h, emb, context,uc=uc) # Attn here
|
40 |
+
|
41 |
+
for i, module in enumerate(self.output_blocks):
|
42 |
+
output_block_motion_module = self.output_blocks_motion_module[i]
|
43 |
+
if only_mid_control:
|
44 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
45 |
+
h = module(h, emb, context,uc=uc)
|
46 |
+
else:
|
47 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
48 |
+
h = module(h, emb, context,uc=uc) # Attn here
|
49 |
+
h = output_block_motion_module(h, emb, context)
|
50 |
+
|
51 |
+
else:
|
52 |
+
num_input_motion_module = 0
|
53 |
+
for i, module in enumerate(self.input_blocks):
|
54 |
+
if i in [1,2,4,5,7,8,10,11]:
|
55 |
+
motion_module = self.input_blocks_motion_module[num_input_motion_module]
|
56 |
+
h, attn_index = module(h, emb, context, bank_attn, attention_mode, attn_index)
|
57 |
+
h = motion_module(h, emb, context)
|
58 |
+
num_input_motion_module += 1
|
59 |
+
else:
|
60 |
+
h, attn_index = module(h, emb, context, bank_attn, attention_mode, attn_index) # Attn here
|
61 |
+
hs.append(h)
|
62 |
+
|
63 |
+
h, attn_index = self.middle_block(h, emb, context, bank_attn, attention_mode, attn_index) # Attn here
|
64 |
+
|
65 |
+
amplify_f = 1.
|
66 |
+
|
67 |
+
if pose_control is not None:
|
68 |
+
h += pose_control.pop() * amplify_f
|
69 |
+
|
70 |
+
if local_pose_control is not None:
|
71 |
+
h += local_pose_control.pop() * amplify_f
|
72 |
+
|
73 |
+
for i, module in enumerate(self.output_blocks):
|
74 |
+
output_block_motion_module = self.output_blocks_motion_module[i]
|
75 |
+
if only_mid_control or (bank_attn is None):
|
76 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
77 |
+
h = module(h, emb, context)
|
78 |
+
else:
|
79 |
+
if pose_control is not None and local_pose_control is not None:
|
80 |
+
h = torch.cat([h, hs.pop() + pose_control.pop() * amplify_f + local_pose_control.pop() * amplify_f], dim=1)
|
81 |
+
elif pose_control is not None:
|
82 |
+
h = torch.cat([h, hs.pop() + pose_control.pop() * amplify_f], dim=1)
|
83 |
+
elif local_pose_control is not None:
|
84 |
+
h = torch.cat([h, hs.pop() + local_pose_control.pop() * amplify_f], dim=1)
|
85 |
+
else:
|
86 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
87 |
+
|
88 |
+
h, attn_index = module(h, emb, context, bank_attn, attention_mode, attn_index) # Attn here
|
89 |
+
h = output_block_motion_module(h, emb, context)
|
90 |
+
|
91 |
+
h = h.type(x.dtype)
|
92 |
+
return self.out(h)
|
93 |
+
|
94 |
+
|
95 |
+
## ControlNet Reference Only-Like Attention
|
96 |
+
class ControlNetReferenceOnly(nn.Module):
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
image_size,
|
100 |
+
in_channels,
|
101 |
+
model_channels,
|
102 |
+
hint_channels,
|
103 |
+
out_channels,
|
104 |
+
num_res_blocks,
|
105 |
+
attention_resolutions,
|
106 |
+
dropout=0,
|
107 |
+
channel_mult=(1, 2, 4, 8),
|
108 |
+
conv_resample=True,
|
109 |
+
dims=2,
|
110 |
+
use_checkpoint=False,
|
111 |
+
use_fp16=False,
|
112 |
+
num_heads=-1,
|
113 |
+
num_head_channels=-1,
|
114 |
+
num_heads_upsample=-1,
|
115 |
+
use_scale_shift_norm=False,
|
116 |
+
resblock_updown=False,
|
117 |
+
use_new_attention_order=False,
|
118 |
+
use_spatial_transformer=False, # custom transformer support
|
119 |
+
transformer_depth=1, # custom transformer support
|
120 |
+
context_dim=None, # custom transformer support
|
121 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
122 |
+
legacy=True,
|
123 |
+
disable_self_attentions=None,
|
124 |
+
num_attention_blocks=None,
|
125 |
+
disable_middle_self_attn=False,
|
126 |
+
use_linear_in_transformer=False,
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
if use_spatial_transformer:
|
130 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
131 |
+
|
132 |
+
if context_dim is not None:
|
133 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
134 |
+
from omegaconf.listconfig import ListConfig
|
135 |
+
if type(context_dim) == ListConfig:
|
136 |
+
context_dim = list(context_dim)
|
137 |
+
|
138 |
+
if num_heads_upsample == -1:
|
139 |
+
num_heads_upsample = num_heads
|
140 |
+
|
141 |
+
if num_heads == -1:
|
142 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
143 |
+
|
144 |
+
if num_head_channels == -1:
|
145 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
146 |
+
|
147 |
+
self.dims = dims
|
148 |
+
self.image_size = image_size
|
149 |
+
self.in_channels = in_channels
|
150 |
+
self.out_channels = out_channels
|
151 |
+
self.model_channels = model_channels
|
152 |
+
if isinstance(num_res_blocks, int):
|
153 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
154 |
+
else:
|
155 |
+
if len(num_res_blocks) != len(channel_mult):
|
156 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
157 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
158 |
+
self.num_res_blocks = num_res_blocks
|
159 |
+
if disable_self_attentions is not None:
|
160 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
161 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
162 |
+
if num_attention_blocks is not None:
|
163 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
164 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
165 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
166 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
167 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
168 |
+
f"attention will still not be set.")
|
169 |
+
|
170 |
+
self.attention_resolutions = attention_resolutions
|
171 |
+
self.dropout = dropout
|
172 |
+
self.channel_mult = channel_mult
|
173 |
+
self.conv_resample = conv_resample
|
174 |
+
self.use_checkpoint = use_checkpoint
|
175 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
176 |
+
self.num_heads = num_heads
|
177 |
+
self.num_head_channels = num_head_channels
|
178 |
+
self.num_heads_upsample = num_heads_upsample
|
179 |
+
self.predict_codebook_ids = n_embed is not None
|
180 |
+
|
181 |
+
time_embed_dim = model_channels * 4
|
182 |
+
self.time_embed = nn.Sequential(
|
183 |
+
linear(model_channels, time_embed_dim),
|
184 |
+
nn.SiLU(),
|
185 |
+
linear(time_embed_dim, time_embed_dim),
|
186 |
+
)
|
187 |
+
|
188 |
+
self.input_blocks = nn.ModuleList(
|
189 |
+
[
|
190 |
+
TimestepEmbedSequential(
|
191 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
192 |
+
)
|
193 |
+
]
|
194 |
+
)
|
195 |
+
|
196 |
+
self.input_hint_block = TimestepEmbedSequential(
|
197 |
+
conv_nd(dims, hint_channels, 16, 3, padding=1),
|
198 |
+
nn.SiLU(),
|
199 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
200 |
+
nn.SiLU(),
|
201 |
+
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
202 |
+
nn.SiLU(),
|
203 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
204 |
+
nn.SiLU(),
|
205 |
+
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
206 |
+
nn.SiLU(),
|
207 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
208 |
+
nn.SiLU(),
|
209 |
+
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
210 |
+
nn.SiLU(),
|
211 |
+
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
212 |
+
)
|
213 |
+
|
214 |
+
self._feature_size = model_channels
|
215 |
+
input_block_chans = [model_channels]
|
216 |
+
ch = model_channels
|
217 |
+
ds = 1
|
218 |
+
for level, mult in enumerate(channel_mult):
|
219 |
+
for nr in range(self.num_res_blocks[level]):
|
220 |
+
layers = [
|
221 |
+
ResBlock(
|
222 |
+
ch,
|
223 |
+
time_embed_dim,
|
224 |
+
dropout,
|
225 |
+
out_channels=mult * model_channels,
|
226 |
+
dims=dims,
|
227 |
+
use_checkpoint=use_checkpoint,
|
228 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
229 |
+
)
|
230 |
+
]
|
231 |
+
ch = mult * model_channels
|
232 |
+
if ds in attention_resolutions:
|
233 |
+
if num_head_channels == -1:
|
234 |
+
dim_head = ch // num_heads
|
235 |
+
else:
|
236 |
+
num_heads = ch // num_head_channels
|
237 |
+
dim_head = num_head_channels
|
238 |
+
if legacy:
|
239 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
240 |
+
if exists(disable_self_attentions):
|
241 |
+
disabled_sa = disable_self_attentions[level]
|
242 |
+
else:
|
243 |
+
disabled_sa = False
|
244 |
+
|
245 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
246 |
+
layers.append(
|
247 |
+
AttentionBlock(
|
248 |
+
ch,
|
249 |
+
use_checkpoint=use_checkpoint,
|
250 |
+
num_heads=num_heads,
|
251 |
+
num_head_channels=dim_head,
|
252 |
+
use_new_attention_order=use_new_attention_order,
|
253 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
254 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
255 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
256 |
+
use_checkpoint=use_checkpoint
|
257 |
+
)
|
258 |
+
)
|
259 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
260 |
+
self._feature_size += ch
|
261 |
+
input_block_chans.append(ch)
|
262 |
+
if level != len(channel_mult) - 1:
|
263 |
+
out_ch = ch
|
264 |
+
self.input_blocks.append(
|
265 |
+
TimestepEmbedSequential(
|
266 |
+
ResBlock(
|
267 |
+
ch,
|
268 |
+
time_embed_dim,
|
269 |
+
dropout,
|
270 |
+
out_channels=out_ch,
|
271 |
+
dims=dims,
|
272 |
+
use_checkpoint=use_checkpoint,
|
273 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
274 |
+
down=True,
|
275 |
+
)
|
276 |
+
if resblock_updown
|
277 |
+
else Downsample(
|
278 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
279 |
+
)
|
280 |
+
)
|
281 |
+
)
|
282 |
+
ch = out_ch
|
283 |
+
input_block_chans.append(ch)
|
284 |
+
ds *= 2
|
285 |
+
self._feature_size += ch
|
286 |
+
|
287 |
+
if num_head_channels == -1:
|
288 |
+
dim_head = ch // num_heads
|
289 |
+
else:
|
290 |
+
num_heads = ch // num_head_channels
|
291 |
+
dim_head = num_head_channels
|
292 |
+
if legacy:
|
293 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
294 |
+
self.middle_block = TimestepEmbedSequential(
|
295 |
+
ResBlock(
|
296 |
+
ch,
|
297 |
+
time_embed_dim,
|
298 |
+
dropout,
|
299 |
+
dims=dims,
|
300 |
+
use_checkpoint=use_checkpoint,
|
301 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
302 |
+
),
|
303 |
+
AttentionBlock(
|
304 |
+
ch,
|
305 |
+
use_checkpoint=use_checkpoint,
|
306 |
+
num_heads=num_heads,
|
307 |
+
num_head_channels=dim_head,
|
308 |
+
use_new_attention_order=use_new_attention_order,
|
309 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
310 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
311 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
312 |
+
use_checkpoint=use_checkpoint
|
313 |
+
),
|
314 |
+
ResBlock(
|
315 |
+
ch,
|
316 |
+
time_embed_dim,
|
317 |
+
dropout,
|
318 |
+
dims=dims,
|
319 |
+
use_checkpoint=use_checkpoint,
|
320 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
321 |
+
),
|
322 |
+
)
|
323 |
+
self._feature_size += ch
|
324 |
+
|
325 |
+
|
326 |
+
self.output_blocks = nn.ModuleList([])
|
327 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
328 |
+
for i in range(self.num_res_blocks[level] + 1):
|
329 |
+
ich = input_block_chans.pop()
|
330 |
+
layers = [
|
331 |
+
ResBlock(
|
332 |
+
ch + ich,
|
333 |
+
time_embed_dim,
|
334 |
+
dropout,
|
335 |
+
out_channels=model_channels * mult,
|
336 |
+
dims=dims,
|
337 |
+
use_checkpoint=use_checkpoint,
|
338 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
339 |
+
)
|
340 |
+
]
|
341 |
+
ch = model_channels * mult
|
342 |
+
if ds in attention_resolutions:
|
343 |
+
if num_head_channels == -1:
|
344 |
+
dim_head = ch // num_heads
|
345 |
+
else:
|
346 |
+
num_heads = ch // num_head_channels
|
347 |
+
dim_head = num_head_channels
|
348 |
+
if legacy:
|
349 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
350 |
+
if exists(disable_self_attentions):
|
351 |
+
disabled_sa = disable_self_attentions[level]
|
352 |
+
else:
|
353 |
+
disabled_sa = False
|
354 |
+
|
355 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
356 |
+
layers.append(
|
357 |
+
AttentionBlock(
|
358 |
+
ch,
|
359 |
+
use_checkpoint=use_checkpoint,
|
360 |
+
num_heads=num_heads_upsample,
|
361 |
+
num_head_channels=dim_head,
|
362 |
+
use_new_attention_order=use_new_attention_order,
|
363 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
364 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
365 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
366 |
+
use_checkpoint=use_checkpoint
|
367 |
+
)
|
368 |
+
)
|
369 |
+
if level and i == self.num_res_blocks[level]:
|
370 |
+
out_ch = ch
|
371 |
+
layers.append(
|
372 |
+
ResBlock(
|
373 |
+
ch,
|
374 |
+
time_embed_dim,
|
375 |
+
dropout,
|
376 |
+
out_channels=out_ch,
|
377 |
+
dims=dims,
|
378 |
+
use_checkpoint=use_checkpoint,
|
379 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
380 |
+
up=True,
|
381 |
+
)
|
382 |
+
if resblock_updown
|
383 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
384 |
+
)
|
385 |
+
ds //= 2
|
386 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
387 |
+
self._feature_size += ch
|
388 |
+
|
389 |
+
|
390 |
+
def forward(self, x, hint, timesteps, context, attention_bank=None, attention_mode=None,uc=False, **kwargs):
|
391 |
+
hs = []
|
392 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
393 |
+
emb = self.time_embed(t_emb)
|
394 |
+
banks = attention_bank
|
395 |
+
outs = []
|
396 |
+
h = x.type(self.dtype)
|
397 |
+
for module in self.input_blocks:
|
398 |
+
h = module(h, emb, context, banks, attention_mode,uc)
|
399 |
+
hs.append(h)
|
400 |
+
|
401 |
+
h = self.middle_block(h, emb, context, banks, attention_mode,uc)
|
402 |
+
|
403 |
+
for module in self.output_blocks:
|
404 |
+
h = th.cat([h, hs.pop()], dim=1)
|
405 |
+
h = module(h, emb, context, banks, attention_mode,uc)
|
406 |
+
|
407 |
+
return outs
|
408 |
+
|
409 |
+
### ControlNet Origin
|
410 |
+
class ControlNet(nn.Module):
|
411 |
+
def __init__(
|
412 |
+
self,
|
413 |
+
image_size,
|
414 |
+
in_channels,
|
415 |
+
model_channels,
|
416 |
+
hint_channels,
|
417 |
+
num_res_blocks,
|
418 |
+
attention_resolutions,
|
419 |
+
dropout=0,
|
420 |
+
channel_mult=(1, 2, 4, 8),
|
421 |
+
conv_resample=True,
|
422 |
+
dims=2,
|
423 |
+
use_checkpoint=False,
|
424 |
+
use_fp16=False,
|
425 |
+
num_heads=-1,
|
426 |
+
num_head_channels=-1,
|
427 |
+
num_heads_upsample=-1,
|
428 |
+
use_scale_shift_norm=False,
|
429 |
+
resblock_updown=False,
|
430 |
+
use_new_attention_order=False,
|
431 |
+
use_spatial_transformer=False, # custom transformer support
|
432 |
+
transformer_depth=1, # custom transformer support
|
433 |
+
context_dim=None, # custom transformer support
|
434 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
435 |
+
legacy=True,
|
436 |
+
disable_self_attentions=None,
|
437 |
+
num_attention_blocks=None,
|
438 |
+
disable_middle_self_attn=False,
|
439 |
+
use_linear_in_transformer=False,
|
440 |
+
):
|
441 |
+
super().__init__()
|
442 |
+
if use_spatial_transformer:
|
443 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
444 |
+
|
445 |
+
if context_dim is not None:
|
446 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
447 |
+
from omegaconf.listconfig import ListConfig
|
448 |
+
if type(context_dim) == ListConfig:
|
449 |
+
context_dim = list(context_dim)
|
450 |
+
|
451 |
+
if num_heads_upsample == -1:
|
452 |
+
num_heads_upsample = num_heads
|
453 |
+
|
454 |
+
if num_heads == -1:
|
455 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
456 |
+
|
457 |
+
if num_head_channels == -1:
|
458 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
459 |
+
|
460 |
+
self.dims = dims
|
461 |
+
self.image_size = image_size
|
462 |
+
self.in_channels = in_channels
|
463 |
+
self.model_channels = model_channels
|
464 |
+
if isinstance(num_res_blocks, int):
|
465 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
466 |
+
else:
|
467 |
+
if len(num_res_blocks) != len(channel_mult):
|
468 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
469 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
470 |
+
self.num_res_blocks = num_res_blocks
|
471 |
+
if disable_self_attentions is not None:
|
472 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
473 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
474 |
+
if num_attention_blocks is not None:
|
475 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
476 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
477 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
478 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
479 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
480 |
+
f"attention will still not be set.")
|
481 |
+
|
482 |
+
self.attention_resolutions = attention_resolutions
|
483 |
+
self.dropout = dropout
|
484 |
+
self.channel_mult = channel_mult
|
485 |
+
self.conv_resample = conv_resample
|
486 |
+
self.use_checkpoint = use_checkpoint
|
487 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
488 |
+
self.num_heads = num_heads
|
489 |
+
self.num_head_channels = num_head_channels
|
490 |
+
self.num_heads_upsample = num_heads_upsample
|
491 |
+
self.predict_codebook_ids = n_embed is not None
|
492 |
+
|
493 |
+
time_embed_dim = model_channels * 4
|
494 |
+
self.time_embed = nn.Sequential(
|
495 |
+
linear(model_channels, time_embed_dim),
|
496 |
+
nn.SiLU(),
|
497 |
+
linear(time_embed_dim, time_embed_dim),
|
498 |
+
)
|
499 |
+
|
500 |
+
self.input_blocks = nn.ModuleList(
|
501 |
+
[
|
502 |
+
TimestepEmbedSequential(
|
503 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
504 |
+
)
|
505 |
+
]
|
506 |
+
)
|
507 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
508 |
+
|
509 |
+
self.input_hint_block = TimestepEmbedSequential(
|
510 |
+
conv_nd(dims, hint_channels, 16, 3, padding=1),
|
511 |
+
nn.SiLU(),
|
512 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
513 |
+
nn.SiLU(),
|
514 |
+
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
515 |
+
nn.SiLU(),
|
516 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
517 |
+
nn.SiLU(),
|
518 |
+
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
519 |
+
nn.SiLU(),
|
520 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
521 |
+
nn.SiLU(),
|
522 |
+
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
523 |
+
nn.SiLU(),
|
524 |
+
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
525 |
+
)
|
526 |
+
|
527 |
+
self._feature_size = model_channels
|
528 |
+
input_block_chans = [model_channels]
|
529 |
+
ch = model_channels
|
530 |
+
ds = 1
|
531 |
+
for level, mult in enumerate(channel_mult):
|
532 |
+
for nr in range(self.num_res_blocks[level]):
|
533 |
+
layers = [
|
534 |
+
ResBlock(
|
535 |
+
ch,
|
536 |
+
time_embed_dim,
|
537 |
+
dropout,
|
538 |
+
out_channels=mult * model_channels,
|
539 |
+
dims=dims,
|
540 |
+
use_checkpoint=use_checkpoint,
|
541 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
542 |
+
)
|
543 |
+
]
|
544 |
+
ch = mult * model_channels
|
545 |
+
if ds in attention_resolutions:
|
546 |
+
if num_head_channels == -1:
|
547 |
+
dim_head = ch // num_heads
|
548 |
+
else:
|
549 |
+
num_heads = ch // num_head_channels
|
550 |
+
dim_head = num_head_channels
|
551 |
+
if legacy:
|
552 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
553 |
+
if exists(disable_self_attentions):
|
554 |
+
disabled_sa = disable_self_attentions[level]
|
555 |
+
else:
|
556 |
+
disabled_sa = False
|
557 |
+
|
558 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
559 |
+
layers.append(
|
560 |
+
AttentionBlock(
|
561 |
+
ch,
|
562 |
+
use_checkpoint=use_checkpoint,
|
563 |
+
num_heads=num_heads,
|
564 |
+
num_head_channels=dim_head,
|
565 |
+
use_new_attention_order=use_new_attention_order,
|
566 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
567 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
568 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
569 |
+
use_checkpoint=use_checkpoint
|
570 |
+
)
|
571 |
+
)
|
572 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
573 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
574 |
+
self._feature_size += ch
|
575 |
+
input_block_chans.append(ch)
|
576 |
+
if level != len(channel_mult) - 1:
|
577 |
+
out_ch = ch
|
578 |
+
self.input_blocks.append(
|
579 |
+
TimestepEmbedSequential(
|
580 |
+
ResBlock(
|
581 |
+
ch,
|
582 |
+
time_embed_dim,
|
583 |
+
dropout,
|
584 |
+
out_channels=out_ch,
|
585 |
+
dims=dims,
|
586 |
+
use_checkpoint=use_checkpoint,
|
587 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
588 |
+
down=True,
|
589 |
+
)
|
590 |
+
if resblock_updown
|
591 |
+
else Downsample(
|
592 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
593 |
+
)
|
594 |
+
)
|
595 |
+
)
|
596 |
+
ch = out_ch
|
597 |
+
input_block_chans.append(ch)
|
598 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
599 |
+
ds *= 2
|
600 |
+
self._feature_size += ch
|
601 |
+
|
602 |
+
if num_head_channels == -1:
|
603 |
+
dim_head = ch // num_heads
|
604 |
+
else:
|
605 |
+
num_heads = ch // num_head_channels
|
606 |
+
dim_head = num_head_channels
|
607 |
+
if legacy:
|
608 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
609 |
+
self.middle_block = TimestepEmbedSequential(
|
610 |
+
ResBlock(
|
611 |
+
ch,
|
612 |
+
time_embed_dim,
|
613 |
+
dropout,
|
614 |
+
dims=dims,
|
615 |
+
use_checkpoint=use_checkpoint,
|
616 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
617 |
+
),
|
618 |
+
AttentionBlock(
|
619 |
+
ch,
|
620 |
+
use_checkpoint=use_checkpoint,
|
621 |
+
num_heads=num_heads,
|
622 |
+
num_head_channels=dim_head,
|
623 |
+
use_new_attention_order=use_new_attention_order,
|
624 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
625 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
626 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
627 |
+
use_checkpoint=use_checkpoint
|
628 |
+
),
|
629 |
+
ResBlock(
|
630 |
+
ch,
|
631 |
+
time_embed_dim,
|
632 |
+
dropout,
|
633 |
+
dims=dims,
|
634 |
+
use_checkpoint=use_checkpoint,
|
635 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
636 |
+
),
|
637 |
+
)
|
638 |
+
self.middle_block_out = self.make_zero_conv(ch)
|
639 |
+
self._feature_size += ch
|
640 |
+
|
641 |
+
def make_zero_conv(self, channels):
|
642 |
+
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
643 |
+
|
644 |
+
def forward(self, x, hint, timesteps, context, **kwargs):
|
645 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
646 |
+
emb = self.time_embed(t_emb)
|
647 |
+
|
648 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
649 |
+
|
650 |
+
outs = []
|
651 |
+
h = x.type(self.dtype)
|
652 |
+
|
653 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
654 |
+
if guided_hint is not None:
|
655 |
+
h = module(h, emb, context)
|
656 |
+
h += guided_hint
|
657 |
+
guided_hint = None
|
658 |
+
else:
|
659 |
+
h = module(h, emb, context)
|
660 |
+
outs.append(zero_conv(h, emb, context))
|
661 |
+
|
662 |
+
h = self.middle_block(h, emb, context)
|
663 |
+
outs.append(self.middle_block_out(h, emb, context))
|
664 |
+
|
665 |
+
return outs
|
666 |
+
|
667 |
+
class ControlLDMReferenceOnly_Temporal_Pose_Local(LatentDiffusionReferenceOnly):
|
668 |
+
|
669 |
+
def __init__(self, control_key, only_mid_control,appearance_control_stage_config, pose_control_stage_config, local_pose_control_stage_config, *args, **kwargs):
|
670 |
+
super().__init__(*args, **kwargs)
|
671 |
+
print(args)
|
672 |
+
print(kwargs)
|
673 |
+
self.control_key = control_key
|
674 |
+
self.only_mid_control = only_mid_control
|
675 |
+
self.control_enabled = True
|
676 |
+
self.appearance_control_model = instantiate_from_config(appearance_control_stage_config)
|
677 |
+
self.pose_control_model = instantiate_from_config(pose_control_stage_config)
|
678 |
+
self.local_pose_control_model = instantiate_from_config(local_pose_control_stage_config)
|
679 |
+
|
680 |
+
def apply_model(self, x_noisy, t, cond, reference_image_noisy, more_reference_image_noisy=[], uc=False,*args, **kwargs):
|
681 |
+
assert isinstance(cond, dict)
|
682 |
+
diffusion_model = self.model.diffusion_model
|
683 |
+
cond_txt = torch.cat(cond['c_crossattn'], 1)
|
684 |
+
if self.control_enabled and 'c_crossattn_void' in cond and cond['c_crossattn_void'] is not None:
|
685 |
+
cond_txt_void = torch.cat(cond['c_crossattn_void'], 1)
|
686 |
+
else:
|
687 |
+
cond_txt_void = cond_txt
|
688 |
+
attention_bank = []
|
689 |
+
|
690 |
+
if reference_image_noisy is not None:
|
691 |
+
empty_outs = self.appearance_control_model(x=reference_image_noisy, hint=None, timesteps=t, context=cond_txt_void, attention_bank=attention_bank, attention_mode='write',uc=uc)
|
692 |
+
for m_reference_image_noisy in more_reference_image_noisy:
|
693 |
+
l_attention_bank = []
|
694 |
+
empty_outs = self.appearance_control_model(x=m_reference_image_noisy, hint=None, timesteps=t, context=cond_txt_void, attention_bank=l_attention_bank, attention_mode='write',uc=uc)
|
695 |
+
for j in range(len(attention_bank)):
|
696 |
+
for k in range(len(attention_bank[j])):
|
697 |
+
attention_bank[j][k] = torch.concat([attention_bank[j][k], l_attention_bank[j][k]], dim=1)
|
698 |
+
|
699 |
+
if not uc:
|
700 |
+
if self.control_enabled and 'c_concat' in cond and cond['c_concat'] is not None:
|
701 |
+
cond_hint = torch.cat(cond['c_concat'], 1)
|
702 |
+
pose_control = self.pose_control_model(x=x_noisy, hint=cond_hint, timesteps=t, context=cond_txt_void)
|
703 |
+
|
704 |
+
if self.control_enabled and 'local_c_concat' in cond and cond['local_c_concat'] is not None:
|
705 |
+
cond_hint = torch.cat(cond['local_c_concat'], 1)
|
706 |
+
local_pose_control = self.local_pose_control_model(x=x_noisy, hint=cond_hint, timesteps=t, context=cond_txt_void)
|
707 |
+
else:
|
708 |
+
pose_control = None
|
709 |
+
local_pose_control = None
|
710 |
+
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=attention_bank, pose_control=pose_control, local_pose_control=local_pose_control, only_mid_control=self.only_mid_control, attention_mode='read',uc=uc)
|
711 |
+
return eps
|
712 |
+
|
713 |
+
@torch.no_grad()
|
714 |
+
def get_unconditional_conditioning(self, N):
|
715 |
+
return self.get_learned_conditioning([""] * N)
|
model_lib/ControlNet/cldm/model.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from model_lib.ControlNet.ldm.util import instantiate_from_config
|
6 |
+
|
7 |
+
|
8 |
+
def get_state_dict(d):
|
9 |
+
return d.get('state_dict', d)
|
10 |
+
|
11 |
+
|
12 |
+
def load_state_dict(ckpt_path, location='cpu'):
|
13 |
+
_, extension = os.path.splitext(ckpt_path)
|
14 |
+
if extension.lower() == ".safetensors":
|
15 |
+
import safetensors.torch
|
16 |
+
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
17 |
+
else:
|
18 |
+
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
|
19 |
+
state_dict = get_state_dict(state_dict)
|
20 |
+
print(f'Loaded state_dict from [{ckpt_path}]')
|
21 |
+
return state_dict
|
22 |
+
|
23 |
+
|
24 |
+
def create_model(config_path):
|
25 |
+
config = OmegaConf.load(config_path)
|
26 |
+
model = instantiate_from_config(config.model).cpu()
|
27 |
+
print(f'Loaded model config from [{config_path}]')
|
28 |
+
return model
|
model_lib/ControlNet/ldm/__pycache__/util.cpython-39.pyc
ADDED
Binary file (6.23 kB). View file
|
|
model_lib/ControlNet/ldm/data/__init__.py
ADDED
File without changes
|
model_lib/ControlNet/ldm/data/util.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from model_lib.ControlNet.ldm.modules.midas.api import load_midas_transform
|
4 |
+
|
5 |
+
|
6 |
+
class AddMiDaS(object):
|
7 |
+
def __init__(self, model_type):
|
8 |
+
super().__init__()
|
9 |
+
self.transform = load_midas_transform(model_type)
|
10 |
+
|
11 |
+
def pt2np(self, x):
|
12 |
+
x = ((x + 1.0) * .5).detach().cpu().numpy()
|
13 |
+
return x
|
14 |
+
|
15 |
+
def np2pt(self, x):
|
16 |
+
x = torch.from_numpy(x) * 2 - 1.
|
17 |
+
return x
|
18 |
+
|
19 |
+
def __call__(self, sample):
|
20 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
21 |
+
x = self.pt2np(sample['jpg'])
|
22 |
+
x = self.transform({"image": x})["image"]
|
23 |
+
sample['midas_in'] = x
|
24 |
+
return sample
|
model_lib/ControlNet/ldm/models/__pycache__/autoencoder.cpython-39.pyc
ADDED
Binary file (7.83 kB). View file
|
|
model_lib/ControlNet/ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytorch_lightning as pl
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from contextlib import contextmanager
|
5 |
+
|
6 |
+
from model_lib.ControlNet.ldm.modules.diffusionmodules.model import Encoder, Decoder
|
7 |
+
from model_lib.ControlNet.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
8 |
+
|
9 |
+
from model_lib.ControlNet.ldm.util import instantiate_from_config
|
10 |
+
from model_lib.ControlNet.ldm.modules.ema import LitEma
|
11 |
+
|
12 |
+
|
13 |
+
class AutoencoderKL(pl.LightningModule):
|
14 |
+
def __init__(self,
|
15 |
+
ddconfig,
|
16 |
+
lossconfig,
|
17 |
+
embed_dim,
|
18 |
+
ckpt_path=None,
|
19 |
+
ignore_keys=[],
|
20 |
+
image_key="image",
|
21 |
+
colorize_nlabels=None,
|
22 |
+
monitor=None,
|
23 |
+
ema_decay=None,
|
24 |
+
learn_logvar=False
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
self.learn_logvar = learn_logvar
|
28 |
+
self.image_key = image_key
|
29 |
+
self.encoder = Encoder(**ddconfig)
|
30 |
+
self.decoder = Decoder(**ddconfig)
|
31 |
+
self.loss = instantiate_from_config(lossconfig)
|
32 |
+
assert ddconfig["double_z"]
|
33 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
34 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
35 |
+
self.embed_dim = embed_dim
|
36 |
+
if colorize_nlabels is not None:
|
37 |
+
assert type(colorize_nlabels)==int
|
38 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
39 |
+
if monitor is not None:
|
40 |
+
self.monitor = monitor
|
41 |
+
|
42 |
+
self.use_ema = ema_decay is not None
|
43 |
+
if self.use_ema:
|
44 |
+
self.ema_decay = ema_decay
|
45 |
+
assert 0. < ema_decay < 1.
|
46 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
47 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
48 |
+
|
49 |
+
if ckpt_path is not None:
|
50 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
51 |
+
|
52 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
53 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
54 |
+
keys = list(sd.keys())
|
55 |
+
for k in keys:
|
56 |
+
for ik in ignore_keys:
|
57 |
+
if k.startswith(ik):
|
58 |
+
print("Deleting key {} from state_dict.".format(k))
|
59 |
+
del sd[k]
|
60 |
+
self.load_state_dict(sd, strict=False)
|
61 |
+
print(f"Restored from {path}")
|
62 |
+
|
63 |
+
@contextmanager
|
64 |
+
def ema_scope(self, context=None):
|
65 |
+
if self.use_ema:
|
66 |
+
self.model_ema.store(self.parameters())
|
67 |
+
self.model_ema.copy_to(self)
|
68 |
+
if context is not None:
|
69 |
+
print(f"{context}: Switched to EMA weights")
|
70 |
+
try:
|
71 |
+
yield None
|
72 |
+
finally:
|
73 |
+
if self.use_ema:
|
74 |
+
self.model_ema.restore(self.parameters())
|
75 |
+
if context is not None:
|
76 |
+
print(f"{context}: Restored training weights")
|
77 |
+
|
78 |
+
def on_train_batch_end(self, *args, **kwargs):
|
79 |
+
if self.use_ema:
|
80 |
+
self.model_ema(self)
|
81 |
+
|
82 |
+
def encode(self, x):
|
83 |
+
h = self.encoder(x)
|
84 |
+
moments = self.quant_conv(h)
|
85 |
+
posterior = DiagonalGaussianDistribution(moments)
|
86 |
+
return posterior
|
87 |
+
|
88 |
+
def decode(self, z):
|
89 |
+
z = self.post_quant_conv(z)
|
90 |
+
dec = self.decoder(z)
|
91 |
+
return dec
|
92 |
+
|
93 |
+
def forward(self, input, sample_posterior=True):
|
94 |
+
posterior = self.encode(input)
|
95 |
+
if sample_posterior:
|
96 |
+
z = posterior.sample()
|
97 |
+
else:
|
98 |
+
z = posterior.mode()
|
99 |
+
dec = self.decode(z)
|
100 |
+
return dec, posterior
|
101 |
+
|
102 |
+
def get_input(self, batch, k):
|
103 |
+
x = batch[k]
|
104 |
+
if len(x.shape) == 3:
|
105 |
+
x = x[..., None]
|
106 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
107 |
+
return x
|
108 |
+
|
109 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
110 |
+
inputs = self.get_input(batch, self.image_key)
|
111 |
+
reconstructions, posterior = self(inputs)
|
112 |
+
|
113 |
+
if optimizer_idx == 0:
|
114 |
+
# train encoder+decoder+logvar
|
115 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
116 |
+
last_layer=self.get_last_layer(), split="train")
|
117 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
118 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
119 |
+
return aeloss
|
120 |
+
|
121 |
+
if optimizer_idx == 1:
|
122 |
+
# train the discriminator
|
123 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
124 |
+
last_layer=self.get_last_layer(), split="train")
|
125 |
+
|
126 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
127 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
128 |
+
return discloss
|
129 |
+
|
130 |
+
def validation_step(self, batch, batch_idx):
|
131 |
+
log_dict = self._validation_step(batch, batch_idx)
|
132 |
+
with self.ema_scope():
|
133 |
+
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
134 |
+
return log_dict
|
135 |
+
|
136 |
+
def _validation_step(self, batch, batch_idx, postfix=""):
|
137 |
+
inputs = self.get_input(batch, self.image_key)
|
138 |
+
reconstructions, posterior = self(inputs)
|
139 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
140 |
+
last_layer=self.get_last_layer(), split="val"+postfix)
|
141 |
+
|
142 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
143 |
+
last_layer=self.get_last_layer(), split="val"+postfix)
|
144 |
+
|
145 |
+
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
146 |
+
self.log_dict(log_dict_ae)
|
147 |
+
self.log_dict(log_dict_disc)
|
148 |
+
return self.log_dict
|
149 |
+
|
150 |
+
def configure_optimizers(self):
|
151 |
+
lr = self.learning_rate
|
152 |
+
ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
|
153 |
+
self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
|
154 |
+
if self.learn_logvar:
|
155 |
+
print(f"{self.__class__.__name__}: Learning logvar")
|
156 |
+
ae_params_list.append(self.loss.logvar)
|
157 |
+
opt_ae = torch.optim.Adam(ae_params_list,
|
158 |
+
lr=lr, betas=(0.5, 0.9))
|
159 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
160 |
+
lr=lr, betas=(0.5, 0.9))
|
161 |
+
return [opt_ae, opt_disc], []
|
162 |
+
|
163 |
+
def get_last_layer(self):
|
164 |
+
return self.decoder.conv_out.weight
|
165 |
+
|
166 |
+
@torch.no_grad()
|
167 |
+
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
168 |
+
log = dict()
|
169 |
+
x = self.get_input(batch, self.image_key)
|
170 |
+
x = x.to(self.device)
|
171 |
+
if not only_inputs:
|
172 |
+
xrec, posterior = self(x)
|
173 |
+
if x.shape[1] > 3:
|
174 |
+
# colorize with random projection
|
175 |
+
assert xrec.shape[1] > 3
|
176 |
+
x = self.to_rgb(x)
|
177 |
+
xrec = self.to_rgb(xrec)
|
178 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
179 |
+
log["reconstructions"] = xrec
|
180 |
+
if log_ema or self.use_ema:
|
181 |
+
with self.ema_scope():
|
182 |
+
xrec_ema, posterior_ema = self(x)
|
183 |
+
if x.shape[1] > 3:
|
184 |
+
# colorize with random projection
|
185 |
+
assert xrec_ema.shape[1] > 3
|
186 |
+
xrec_ema = self.to_rgb(xrec_ema)
|
187 |
+
log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
|
188 |
+
log["reconstructions_ema"] = xrec_ema
|
189 |
+
log["inputs"] = x
|
190 |
+
return log
|
191 |
+
|
192 |
+
def to_rgb(self, x):
|
193 |
+
assert self.image_key == "segmentation"
|
194 |
+
if not hasattr(self, "colorize"):
|
195 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
196 |
+
x = F.conv2d(x, weight=self.colorize)
|
197 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
198 |
+
return x
|
199 |
+
|
200 |
+
|
201 |
+
class IdentityFirstStage(torch.nn.Module):
|
202 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
203 |
+
self.vq_interface = vq_interface
|
204 |
+
super().__init__()
|
205 |
+
|
206 |
+
def encode(self, x, *args, **kwargs):
|
207 |
+
return x
|
208 |
+
|
209 |
+
def decode(self, x, *args, **kwargs):
|
210 |
+
return x
|
211 |
+
|
212 |
+
def quantize(self, x, *args, **kwargs):
|
213 |
+
if self.vq_interface:
|
214 |
+
return x, None, [None, None, None]
|
215 |
+
return x
|
216 |
+
|
217 |
+
def forward(self, x, *args, **kwargs):
|
218 |
+
return x
|
219 |
+
|
model_lib/ControlNet/ldm/models/diffusion/__init__.py
ADDED
File without changes
|
model_lib/ControlNet/ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (228 Bytes). View file
|
|
model_lib/ControlNet/ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc
ADDED
Binary file (18.2 kB). View file
|
|
model_lib/ControlNet/ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc
ADDED
Binary file (69 kB). View file
|
|
model_lib/ControlNet/ldm/models/diffusion/ddim.py
ADDED
@@ -0,0 +1,763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import pdb
|
4 |
+
import random
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from model_lib.ControlNet.ldm.modules.diffusionmodules.util import (
|
9 |
+
extract_into_tensor, make_ddim_sampling_parameters, make_ddim_timesteps,
|
10 |
+
noise_like)
|
11 |
+
from model_lib.ControlNet.ldm.util import default
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
|
15 |
+
class DDIMSampler(object):
|
16 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
17 |
+
super().__init__()
|
18 |
+
self.model = model
|
19 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
20 |
+
self.schedule = schedule
|
21 |
+
|
22 |
+
def register_buffer(self, name, attr):
|
23 |
+
if type(attr) == torch.Tensor:
|
24 |
+
if attr.device != torch.device("cuda"):
|
25 |
+
attr = attr.to(torch.device("cuda"))
|
26 |
+
setattr(self, name, attr)
|
27 |
+
|
28 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
29 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
30 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
31 |
+
alphas_cumprod = self.model.alphas_cumprod
|
32 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
33 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
34 |
+
|
35 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
36 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
37 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
38 |
+
|
39 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
40 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
43 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
44 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
45 |
+
|
46 |
+
# ddim sampling parameters
|
47 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
48 |
+
ddim_timesteps=self.ddim_timesteps,
|
49 |
+
eta=ddim_eta,verbose=verbose)
|
50 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
51 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
52 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
53 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
54 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
55 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
56 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
57 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def sample(self,
|
61 |
+
S,
|
62 |
+
batch_size,
|
63 |
+
shape,
|
64 |
+
conditioning=None,
|
65 |
+
callback=None,
|
66 |
+
normals_sequence=None,
|
67 |
+
img_callback=None,
|
68 |
+
quantize_x0=False,
|
69 |
+
eta=0.,
|
70 |
+
mask=None,
|
71 |
+
x0=None,
|
72 |
+
temperature=1.,
|
73 |
+
noise_dropout=0.,
|
74 |
+
score_corrector=None,
|
75 |
+
corrector_kwargs=None,
|
76 |
+
verbose=True,
|
77 |
+
x_T=None,
|
78 |
+
log_every_t=100,
|
79 |
+
unconditional_guidance_scale=1.,
|
80 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
81 |
+
dynamic_threshold=None,
|
82 |
+
ucg_schedule=None,
|
83 |
+
inpaint=None,
|
84 |
+
**kwargs
|
85 |
+
):
|
86 |
+
if conditioning is not None:
|
87 |
+
if isinstance(conditioning, dict):
|
88 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
89 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
90 |
+
cbs = ctmp.shape[0]
|
91 |
+
if cbs != batch_size:
|
92 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
93 |
+
|
94 |
+
elif isinstance(conditioning, list):
|
95 |
+
for ctmp in conditioning:
|
96 |
+
if ctmp.shape[0] != batch_size:
|
97 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
98 |
+
|
99 |
+
else:
|
100 |
+
if conditioning.shape[0] != batch_size:
|
101 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
102 |
+
|
103 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
104 |
+
# sampling
|
105 |
+
C, H, W = shape
|
106 |
+
size = (batch_size, C, H, W)
|
107 |
+
print(f'Data shape for DDIM sampling is {C, H, W}')
|
108 |
+
|
109 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
110 |
+
callback=callback,
|
111 |
+
img_callback=img_callback,
|
112 |
+
quantize_denoised=quantize_x0,
|
113 |
+
mask=mask, x0=x0,
|
114 |
+
ddim_use_original_steps=False,
|
115 |
+
noise_dropout=noise_dropout,
|
116 |
+
temperature=temperature,
|
117 |
+
score_corrector=score_corrector,
|
118 |
+
corrector_kwargs=corrector_kwargs,
|
119 |
+
x_T=x_T,
|
120 |
+
log_every_t=log_every_t,
|
121 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
122 |
+
unconditional_conditioning=unconditional_conditioning,
|
123 |
+
dynamic_threshold=dynamic_threshold,
|
124 |
+
ucg_schedule=ucg_schedule,
|
125 |
+
inpaint=inpaint
|
126 |
+
)
|
127 |
+
return samples, intermediates
|
128 |
+
|
129 |
+
@torch.no_grad()
|
130 |
+
def ddim_sampling(self, cond, shape,
|
131 |
+
x_T=None, ddim_use_original_steps=False,
|
132 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
133 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
134 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
135 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
136 |
+
ucg_schedule=None,inpaint=None):
|
137 |
+
device = self.model.betas.device
|
138 |
+
b = shape[0]
|
139 |
+
if x_T is None:
|
140 |
+
img = torch.randn(shape, device=device)
|
141 |
+
else:
|
142 |
+
img = x_T
|
143 |
+
|
144 |
+
if timesteps is None:
|
145 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
146 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
147 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
148 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
149 |
+
|
150 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
151 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
152 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
153 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
154 |
+
|
155 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
156 |
+
|
157 |
+
for i, step in enumerate(iterator):
|
158 |
+
index = total_steps - i - 1
|
159 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
160 |
+
|
161 |
+
if mask is not None:
|
162 |
+
assert x0 is not None
|
163 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
164 |
+
img = img_orig * mask + (1. - mask) * img
|
165 |
+
|
166 |
+
if ucg_schedule is not None:
|
167 |
+
assert len(ucg_schedule) == len(time_range)
|
168 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
169 |
+
|
170 |
+
model_output = self.p_sample_ddim(img, cond, ts,
|
171 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
172 |
+
unconditional_conditioning=unconditional_conditioning,
|
173 |
+
inpaint=inpaint)
|
174 |
+
outs = self.pred_x_prev_from_eps(img, cond, ts, model_output, index=index, use_original_steps=ddim_use_original_steps,
|
175 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
176 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
177 |
+
corrector_kwargs=corrector_kwargs,
|
178 |
+
dynamic_threshold=dynamic_threshold)
|
179 |
+
img, pred_x0 = outs
|
180 |
+
if callback: callback(i)
|
181 |
+
if img_callback: img_callback(pred_x0, i)
|
182 |
+
|
183 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
184 |
+
intermediates['x_inter'].append(img)
|
185 |
+
intermediates['pred_x0'].append(pred_x0)
|
186 |
+
|
187 |
+
return img, intermediates
|
188 |
+
|
189 |
+
@torch.no_grad()
|
190 |
+
def p_sample_ddim(self, x, c, t, unconditional_guidance_scale=1., unconditional_conditioning=None, inpaint=None):
|
191 |
+
|
192 |
+
if inpaint is None:
|
193 |
+
x_In = x
|
194 |
+
else:
|
195 |
+
x_In = torch.cat([x,inpaint],dim=1)
|
196 |
+
|
197 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
198 |
+
model_output = self.model.apply_model(x_In, t, c)
|
199 |
+
else:
|
200 |
+
x_in = torch.cat([x_In] * 2)
|
201 |
+
t_in = torch.cat([t] * 2)
|
202 |
+
if isinstance(c, dict):
|
203 |
+
assert isinstance(unconditional_conditioning, dict)
|
204 |
+
c_in = dict()
|
205 |
+
for k in c:
|
206 |
+
if isinstance(c[k], list):
|
207 |
+
c_in[k] = [torch.cat([
|
208 |
+
unconditional_conditioning[k][i],
|
209 |
+
c[k][i]]) for i in range(len(c[k]))]
|
210 |
+
else:
|
211 |
+
c_in[k] = torch.cat([
|
212 |
+
unconditional_conditioning[k],
|
213 |
+
c[k]])
|
214 |
+
elif isinstance(c, list):
|
215 |
+
c_in = list()
|
216 |
+
assert isinstance(unconditional_conditioning, list)
|
217 |
+
for i in range(len(c)):
|
218 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
219 |
+
else:
|
220 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
221 |
+
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) # , reference_image_noisy
|
222 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
223 |
+
|
224 |
+
return model_output
|
225 |
+
|
226 |
+
@torch.no_grad()
|
227 |
+
def pred_x_prev_from_eps(self, x, c, t, model_output, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
228 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
229 |
+
dynamic_threshold=None):
|
230 |
+
b, *_, device = *x.shape, x.device
|
231 |
+
if self.model.parameterization == "v":
|
232 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
233 |
+
else:
|
234 |
+
e_t = model_output
|
235 |
+
|
236 |
+
if score_corrector is not None:
|
237 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
238 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
239 |
+
|
240 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
241 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
242 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
243 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
244 |
+
# select parameters corresponding to the currently considered timestep
|
245 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
246 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
247 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
248 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
249 |
+
# current prediction for x_0
|
250 |
+
if self.model.parameterization != "v":
|
251 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
252 |
+
else:
|
253 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
254 |
+
|
255 |
+
if quantize_denoised:
|
256 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
257 |
+
|
258 |
+
if dynamic_threshold is not None:
|
259 |
+
raise NotImplementedError()
|
260 |
+
|
261 |
+
# direction pointing to x_t
|
262 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
263 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
264 |
+
if noise_dropout > 0.:
|
265 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
266 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
267 |
+
return x_prev, pred_x0
|
268 |
+
|
269 |
+
@torch.no_grad()
|
270 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
271 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
272 |
+
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
273 |
+
|
274 |
+
assert t_enc <= num_reference_steps
|
275 |
+
num_steps = t_enc
|
276 |
+
|
277 |
+
if use_original_steps:
|
278 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
279 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
280 |
+
else:
|
281 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
282 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
283 |
+
|
284 |
+
x_next = x0
|
285 |
+
intermediates = []
|
286 |
+
inter_steps = []
|
287 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
288 |
+
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
289 |
+
if unconditional_guidance_scale == 1.:
|
290 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
291 |
+
else:
|
292 |
+
assert unconditional_conditioning is not None
|
293 |
+
e_t_uncond, noise_pred = torch.chunk(
|
294 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
295 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
296 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
297 |
+
|
298 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
299 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
300 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
301 |
+
x_next = xt_weighted + weighted_noise_pred
|
302 |
+
if return_intermediates and i % (
|
303 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
304 |
+
intermediates.append(x_next)
|
305 |
+
inter_steps.append(i)
|
306 |
+
elif return_intermediates and i >= num_steps - 2:
|
307 |
+
intermediates.append(x_next)
|
308 |
+
inter_steps.append(i)
|
309 |
+
if callback: callback(i)
|
310 |
+
|
311 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
312 |
+
if return_intermediates:
|
313 |
+
out.update({'intermediates': intermediates})
|
314 |
+
return x_next, out
|
315 |
+
|
316 |
+
@torch.no_grad()
|
317 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
318 |
+
# fast, but does not allow for exact reconstruction
|
319 |
+
# t serves as an index to gather the correct alphas
|
320 |
+
if use_original_steps:
|
321 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
322 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
323 |
+
else:
|
324 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
325 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
326 |
+
|
327 |
+
if noise is None:
|
328 |
+
noise = torch.randn_like(x0)
|
329 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
330 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
331 |
+
|
332 |
+
@torch.no_grad()
|
333 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
334 |
+
use_original_steps=False, callback=None, inpaint=None):
|
335 |
+
|
336 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
337 |
+
timesteps = timesteps[:t_start]
|
338 |
+
|
339 |
+
time_range = np.flip(timesteps)
|
340 |
+
total_steps = timesteps.shape[0]
|
341 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
342 |
+
|
343 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
344 |
+
x_dec = x_latent
|
345 |
+
for i, step in enumerate(iterator):
|
346 |
+
index = total_steps - i - 1
|
347 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
348 |
+
model_output = self.p_sample_ddim(x_dec, cond, ts,
|
349 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
350 |
+
unconditional_conditioning=unconditional_conditioning, inpaint=inpaint)
|
351 |
+
x_dec, _ = self.pred_x_prev_from_eps(x_dec, cond, ts, model_output, index=index, use_original_steps=use_original_steps)
|
352 |
+
|
353 |
+
if callback: callback(i)
|
354 |
+
return x_dec
|
355 |
+
|
356 |
+
|
357 |
+
class DDIMSampler_ReferenceOnly(object):
|
358 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
359 |
+
super().__init__()
|
360 |
+
self.model = model
|
361 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
362 |
+
self.schedule = schedule
|
363 |
+
|
364 |
+
def register_buffer(self, name, attr):
|
365 |
+
if type(attr) == torch.Tensor:
|
366 |
+
if attr.device != torch.device("cuda"):
|
367 |
+
attr = attr.to(torch.device("cuda"))
|
368 |
+
setattr(self, name, attr)
|
369 |
+
|
370 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
371 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
372 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
373 |
+
alphas_cumprod = self.model.alphas_cumprod
|
374 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
375 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
376 |
+
|
377 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
378 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
379 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
380 |
+
|
381 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
382 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
383 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
384 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
385 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
386 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
387 |
+
|
388 |
+
# ddim sampling parameters
|
389 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
390 |
+
ddim_timesteps=self.ddim_timesteps,
|
391 |
+
eta=ddim_eta,verbose=verbose)
|
392 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
393 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
394 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
395 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
396 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
397 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
398 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
399 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
400 |
+
|
401 |
+
@torch.no_grad()
|
402 |
+
def sample(self,
|
403 |
+
S,
|
404 |
+
batch_size,
|
405 |
+
shape,
|
406 |
+
conditioning=None,
|
407 |
+
callback=None,
|
408 |
+
normals_sequence=None,
|
409 |
+
img_callback=None,
|
410 |
+
quantize_x0=False,
|
411 |
+
eta=0.,
|
412 |
+
mask=None,
|
413 |
+
x0=None,
|
414 |
+
temperature=1.,
|
415 |
+
noise_dropout=0.,
|
416 |
+
score_corrector=None,
|
417 |
+
corrector_kwargs=None,
|
418 |
+
verbose=True,
|
419 |
+
x_T=None,
|
420 |
+
log_every_t=100,
|
421 |
+
unconditional_guidance_scale=1.,
|
422 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
423 |
+
dynamic_threshold=None,
|
424 |
+
ucg_schedule=None,
|
425 |
+
inpaint=None,
|
426 |
+
num_overlap=0,
|
427 |
+
**kwargs
|
428 |
+
):
|
429 |
+
if conditioning is not None:
|
430 |
+
if isinstance(conditioning, dict):
|
431 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
432 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
433 |
+
cbs = ctmp.shape[0]
|
434 |
+
if cbs != batch_size:
|
435 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
436 |
+
|
437 |
+
elif isinstance(conditioning, list):
|
438 |
+
for ctmp in conditioning:
|
439 |
+
if ctmp.shape[0] != batch_size:
|
440 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
441 |
+
|
442 |
+
else:
|
443 |
+
if conditioning.shape[0] != batch_size:
|
444 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
445 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
446 |
+
# sampling
|
447 |
+
C, H, W = shape
|
448 |
+
size = (batch_size, C, H, W)
|
449 |
+
print(f'Data shape for DDIM sampling is {C, H, W}')
|
450 |
+
|
451 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
452 |
+
callback=callback,
|
453 |
+
img_callback=img_callback,
|
454 |
+
quantize_denoised=quantize_x0,
|
455 |
+
mask=mask, x0=x0,
|
456 |
+
ddim_use_original_steps=False,
|
457 |
+
noise_dropout=noise_dropout,
|
458 |
+
temperature=temperature,
|
459 |
+
score_corrector=score_corrector,
|
460 |
+
corrector_kwargs=corrector_kwargs,
|
461 |
+
x_T=x_T,
|
462 |
+
log_every_t=log_every_t,
|
463 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
464 |
+
unconditional_conditioning=unconditional_conditioning,
|
465 |
+
dynamic_threshold=dynamic_threshold,
|
466 |
+
ucg_schedule=ucg_schedule,
|
467 |
+
inpaint=inpaint,
|
468 |
+
num_overlap=num_overlap
|
469 |
+
)
|
470 |
+
return samples, intermediates
|
471 |
+
|
472 |
+
@torch.no_grad()
|
473 |
+
def ddim_sampling(self, cond, shape,
|
474 |
+
x_T=None, ddim_use_original_steps=False,
|
475 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
476 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
477 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
478 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
479 |
+
ucg_schedule=None,inpaint=None,num_overlap=0):
|
480 |
+
device = self.model.betas.device
|
481 |
+
b = shape[0]
|
482 |
+
if x_T is None:
|
483 |
+
img = torch.randn(shape, device=device)
|
484 |
+
else:
|
485 |
+
img = x_T
|
486 |
+
|
487 |
+
if timesteps is None:
|
488 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
489 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
490 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
491 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
492 |
+
|
493 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
494 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
495 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
496 |
+
|
497 |
+
|
498 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
499 |
+
|
500 |
+
num_frames = img.shape[0]
|
501 |
+
|
502 |
+
for i, step in enumerate(iterator):
|
503 |
+
index = total_steps - i - 1
|
504 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
505 |
+
|
506 |
+
if mask is not None:
|
507 |
+
assert x0 is not None
|
508 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
509 |
+
img = img_orig * mask + (1. - mask) * img
|
510 |
+
if ucg_schedule is not None:
|
511 |
+
assert len(ucg_schedule) == len(time_range)
|
512 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
513 |
+
if num_overlap == 0:
|
514 |
+
model_output = self.p_sample_ddim(img, cond, ts, unconditional_guidance_scale=unconditional_guidance_scale,
|
515 |
+
unconditional_conditioning=unconditional_conditioning, inpaint=inpaint)
|
516 |
+
else:
|
517 |
+
model_output_all = torch.zeros_like(img)
|
518 |
+
counts = torch.zeros(num_frames).cuda()
|
519 |
+
offset = random.randint(0, num_frames-1)
|
520 |
+
skip = b - num_overlap
|
521 |
+
for start_idx in range(offset, offset+num_frames-num_overlap, skip):
|
522 |
+
indices = torch.arange(start_idx, start_idx + b) % num_frames
|
523 |
+
sel_cond = {}
|
524 |
+
for k, v in cond.items():
|
525 |
+
if isinstance(v, list) and k != 'more_image_control':
|
526 |
+
sel_cond[k] = [c[indices] for c in v]
|
527 |
+
elif k == 'more_image_control':
|
528 |
+
num_more_refs = len(v)
|
529 |
+
sel_cond[k] = []
|
530 |
+
for i in range(num_more_refs):
|
531 |
+
sel_cond[k].append([c[indices] for c in v[i]])
|
532 |
+
else:
|
533 |
+
sel_cond[k] = v
|
534 |
+
sel_uncond = {}
|
535 |
+
for k, v in unconditional_conditioning.items():
|
536 |
+
if isinstance(v, list) and k != 'more_image_control':
|
537 |
+
sel_uncond[k] = [c[indices] for c in v]
|
538 |
+
elif k == 'more_image_control':
|
539 |
+
num_more_refs = len(v)
|
540 |
+
sel_uncond[k] = []
|
541 |
+
for i in range(num_more_refs):
|
542 |
+
sel_uncond[k].append([c[indices] for c in v[i]])
|
543 |
+
else:
|
544 |
+
sel_uncond[k] = v
|
545 |
+
model_output = self.p_sample_ddim(img[indices], sel_cond, ts, unconditional_guidance_scale=unconditional_guidance_scale,
|
546 |
+
unconditional_conditioning=sel_uncond, inpaint=inpaint)
|
547 |
+
model_output_all[indices] += model_output
|
548 |
+
counts[indices] += 1
|
549 |
+
model_output = model_output_all / counts.reshape(-1, 1, 1, 1)
|
550 |
+
|
551 |
+
outs = self.pred_x_prev_from_eps(img, cond, ts, model_output, index=index, temperature=temperature,
|
552 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
553 |
+
corrector_kwargs=corrector_kwargs, dynamic_threshold=dynamic_threshold)
|
554 |
+
|
555 |
+
img, pred_x0 = outs
|
556 |
+
if callback: callback(i)
|
557 |
+
if img_callback: img_callback(pred_x0, i)
|
558 |
+
|
559 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
560 |
+
intermediates['x_inter'].append(img)
|
561 |
+
intermediates['pred_x0'].append(pred_x0)
|
562 |
+
|
563 |
+
return img, intermediates
|
564 |
+
|
565 |
+
@torch.no_grad()
|
566 |
+
def p_sample_ddim(self, x, c, t, unconditional_guidance_scale=1., unconditional_conditioning=None, inpaint=None):
|
567 |
+
if inpaint is None:
|
568 |
+
x_In = x
|
569 |
+
else:
|
570 |
+
x_In = torch.cat([x,inpaint],dim=1)
|
571 |
+
|
572 |
+
if 'image_control' in c and c['image_control'] is not None:
|
573 |
+
cond_image_start = torch.cat(c['image_control'], 1)
|
574 |
+
if c['wonoise']:
|
575 |
+
reference_image_noisy = cond_image_start
|
576 |
+
else:
|
577 |
+
reference_image_noisy = self.model.q_sample(cond_image_start,t)
|
578 |
+
|
579 |
+
more_reference_image_noisy = []
|
580 |
+
if 'more_image_control' in c and c['more_image_control'] is not None:
|
581 |
+
num_additional_ref_imgs = len(c['more_image_control'])
|
582 |
+
for i in range(num_additional_ref_imgs):
|
583 |
+
m_ref_img_noisy = torch.cat(c['more_image_control'][i], 1)
|
584 |
+
if not c['wonoise']:
|
585 |
+
m_ref_img_noisy = self.model.q_sample(m_ref_img_noisy, t)
|
586 |
+
more_reference_image_noisy.append(m_ref_img_noisy)
|
587 |
+
|
588 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
589 |
+
model_output = self.model.apply_model(x_In, t, c)
|
590 |
+
else:
|
591 |
+
if 'image_control' in unconditional_conditioning and unconditional_conditioning['image_control'] is not None:
|
592 |
+
x_in = torch.cat([x_In] * 2)
|
593 |
+
t_in = torch.cat([t] * 2)
|
594 |
+
reference_image_noisy_in = torch.cat([reference_image_noisy] * 2)
|
595 |
+
more_reference_image_noisy = [torch.cat([m_ref_img] * 2) for m_ref_img in more_reference_image_noisy]
|
596 |
+
if isinstance(c, dict):
|
597 |
+
assert isinstance(unconditional_conditioning, dict)
|
598 |
+
c_in = dict()
|
599 |
+
for k in c:
|
600 |
+
if isinstance(c[k], list):
|
601 |
+
c_in[k] = [torch.cat([
|
602 |
+
unconditional_conditioning[k][i],
|
603 |
+
c[k][i]]) for i in range(len(c[k]))]
|
604 |
+
else:
|
605 |
+
try:
|
606 |
+
c_in[k] = torch.cat([
|
607 |
+
unconditional_conditioning[k],
|
608 |
+
c[k]])
|
609 |
+
except:
|
610 |
+
c_in[k] = unconditional_conditioning[k]
|
611 |
+
elif isinstance(c, list):
|
612 |
+
c_in = list()
|
613 |
+
assert isinstance(unconditional_conditioning, list)
|
614 |
+
for i in range(len(c)):
|
615 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
616 |
+
else:
|
617 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
618 |
+
# pdb.set_trace()
|
619 |
+
|
620 |
+
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in, reference_image_noisy_in, more_reference_image_noisy = more_reference_image_noisy).chunk(2) # , reference_image_noisy
|
621 |
+
else:
|
622 |
+
x_in = x_In
|
623 |
+
t_in = t
|
624 |
+
c_in = c
|
625 |
+
reference_image_noisy_in = reference_image_noisy
|
626 |
+
model_t = self.model.apply_model(x_in, t_in, c_in, reference_image_noisy_in, more_reference_image_noisy = more_reference_image_noisy)
|
627 |
+
model_uncond = self.model.apply_model(x_in, t_in, unconditional_conditioning, None,uc=True)
|
628 |
+
# pdb.set_trace()
|
629 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
630 |
+
|
631 |
+
return model_output
|
632 |
+
|
633 |
+
@torch.no_grad()
|
634 |
+
def pred_x_prev_from_eps(self, x, c, t, model_output, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
635 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
636 |
+
dynamic_threshold=None):
|
637 |
+
b, *_, device = *x.shape, x.device
|
638 |
+
if self.model.parameterization == "v":
|
639 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
640 |
+
else:
|
641 |
+
e_t = model_output
|
642 |
+
if score_corrector is not None:
|
643 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
644 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
645 |
+
|
646 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
647 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
648 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
649 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
650 |
+
|
651 |
+
# select parameters corresponding to the currently considered timestep
|
652 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
653 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
654 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
655 |
+
# print ('sigma_t: {}'.format(sigma_t[0, 0, 0, 0]))
|
656 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
657 |
+
# current prediction for x_0
|
658 |
+
if self.model.parameterization != "v":
|
659 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
660 |
+
else:
|
661 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
662 |
+
if quantize_denoised:
|
663 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
664 |
+
|
665 |
+
if dynamic_threshold is not None:
|
666 |
+
raise NotImplementedError()
|
667 |
+
# direction pointing to x_t
|
668 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
669 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
670 |
+
if noise_dropout > 0.:
|
671 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
672 |
+
|
673 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
674 |
+
|
675 |
+
return x_prev, pred_x0
|
676 |
+
|
677 |
+
@torch.no_grad()
|
678 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
679 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
680 |
+
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
681 |
+
|
682 |
+
assert t_enc <= num_reference_steps
|
683 |
+
num_steps = t_enc
|
684 |
+
|
685 |
+
if use_original_steps:
|
686 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
687 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
688 |
+
else:
|
689 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
690 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
691 |
+
|
692 |
+
x_next = x0
|
693 |
+
intermediates = []
|
694 |
+
inter_steps = []
|
695 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
696 |
+
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
697 |
+
if unconditional_guidance_scale == 1.:
|
698 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
699 |
+
else:
|
700 |
+
assert unconditional_conditioning is not None
|
701 |
+
e_t_uncond, noise_pred = torch.chunk(
|
702 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
703 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
704 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
705 |
+
|
706 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
707 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
708 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
709 |
+
x_next = xt_weighted + weighted_noise_pred
|
710 |
+
if return_intermediates and i % (
|
711 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
712 |
+
intermediates.append(x_next)
|
713 |
+
inter_steps.append(i)
|
714 |
+
elif return_intermediates and i >= num_steps - 2:
|
715 |
+
intermediates.append(x_next)
|
716 |
+
inter_steps.append(i)
|
717 |
+
if callback: callback(i)
|
718 |
+
|
719 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
720 |
+
if return_intermediates:
|
721 |
+
out.update({'intermediates': intermediates})
|
722 |
+
return x_next, out
|
723 |
+
|
724 |
+
@torch.no_grad()
|
725 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
726 |
+
# fast, but does not allow for exact reconstruction
|
727 |
+
# t serves as an index to gather the correct alphas
|
728 |
+
if use_original_steps:
|
729 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
730 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
731 |
+
else:
|
732 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
733 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
734 |
+
|
735 |
+
if noise is None:
|
736 |
+
noise = torch.randn_like(x0)
|
737 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
738 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
739 |
+
|
740 |
+
@torch.no_grad()
|
741 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
742 |
+
use_original_steps=False, callback=None, inpaint=None):
|
743 |
+
|
744 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
745 |
+
timesteps = timesteps[:t_start]
|
746 |
+
|
747 |
+
time_range = np.flip(timesteps)
|
748 |
+
total_steps = timesteps.shape[0]
|
749 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
750 |
+
|
751 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
752 |
+
x_dec = x_latent
|
753 |
+
for i, step in enumerate(iterator):
|
754 |
+
index = total_steps - i - 1
|
755 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
756 |
+
|
757 |
+
model_output = self.p_sample_ddim(x_dec, cond, ts,
|
758 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
759 |
+
unconditional_conditioning=unconditional_conditioning, inpaint=inpaint)
|
760 |
+
|
761 |
+
x_dec, _ = self.pred_x_prev_from_eps(x_dec, cond, ts, model_output, index)
|
762 |
+
if callback: callback(i)
|
763 |
+
return x_dec
|
model_lib/ControlNet/ldm/models/diffusion/ddpm.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model_lib/ControlNet/ldm/models/diffusion/dpm_solver/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .sampler import DPMSolverSampler
|
model_lib/ControlNet/ldm/models/diffusion/dpm_solver/dpm_solver.py
ADDED
@@ -0,0 +1,1154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import math
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
class NoiseScheduleVP:
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
schedule='discrete',
|
11 |
+
betas=None,
|
12 |
+
alphas_cumprod=None,
|
13 |
+
continuous_beta_0=0.1,
|
14 |
+
continuous_beta_1=20.,
|
15 |
+
):
|
16 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
17 |
+
***
|
18 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
19 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
20 |
+
***
|
21 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
22 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
23 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
24 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
25 |
+
sigma_t = self.marginal_std(t)
|
26 |
+
lambda_t = self.marginal_lambda(t)
|
27 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
28 |
+
t = self.inverse_lambda(lambda_t)
|
29 |
+
===============================================================
|
30 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
31 |
+
1. For discrete-time DPMs:
|
32 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
33 |
+
t_i = (i + 1) / N
|
34 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
35 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
36 |
+
Args:
|
37 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
38 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
39 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
40 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
41 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
42 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
43 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
44 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
45 |
+
and
|
46 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
47 |
+
2. For continuous-time DPMs:
|
48 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
49 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
50 |
+
Args:
|
51 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
52 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
53 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
54 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
55 |
+
T: A `float` number. The ending time of the forward process.
|
56 |
+
===============================================================
|
57 |
+
Args:
|
58 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
59 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
60 |
+
Returns:
|
61 |
+
A wrapper object of the forward SDE (VP type).
|
62 |
+
|
63 |
+
===============================================================
|
64 |
+
Example:
|
65 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
66 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
67 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
68 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
69 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
70 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
71 |
+
"""
|
72 |
+
|
73 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
74 |
+
raise ValueError(
|
75 |
+
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
|
76 |
+
schedule))
|
77 |
+
|
78 |
+
self.schedule = schedule
|
79 |
+
if schedule == 'discrete':
|
80 |
+
if betas is not None:
|
81 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
82 |
+
else:
|
83 |
+
assert alphas_cumprod is not None
|
84 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
85 |
+
self.total_N = len(log_alphas)
|
86 |
+
self.T = 1.
|
87 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
88 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
89 |
+
else:
|
90 |
+
self.total_N = 1000
|
91 |
+
self.beta_0 = continuous_beta_0
|
92 |
+
self.beta_1 = continuous_beta_1
|
93 |
+
self.cosine_s = 0.008
|
94 |
+
self.cosine_beta_max = 999.
|
95 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
|
96 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
97 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
98 |
+
self.schedule = schedule
|
99 |
+
if schedule == 'cosine':
|
100 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
101 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
102 |
+
self.T = 0.9946
|
103 |
+
else:
|
104 |
+
self.T = 1.
|
105 |
+
|
106 |
+
def marginal_log_mean_coeff(self, t):
|
107 |
+
"""
|
108 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
109 |
+
"""
|
110 |
+
if self.schedule == 'discrete':
|
111 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
|
112 |
+
self.log_alpha_array.to(t.device)).reshape((-1))
|
113 |
+
elif self.schedule == 'linear':
|
114 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
115 |
+
elif self.schedule == 'cosine':
|
116 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
117 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
118 |
+
return log_alpha_t
|
119 |
+
|
120 |
+
def marginal_alpha(self, t):
|
121 |
+
"""
|
122 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
123 |
+
"""
|
124 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
125 |
+
|
126 |
+
def marginal_std(self, t):
|
127 |
+
"""
|
128 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
129 |
+
"""
|
130 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
131 |
+
|
132 |
+
def marginal_lambda(self, t):
|
133 |
+
"""
|
134 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
135 |
+
"""
|
136 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
137 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
138 |
+
return log_mean_coeff - log_std
|
139 |
+
|
140 |
+
def inverse_lambda(self, lamb):
|
141 |
+
"""
|
142 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
143 |
+
"""
|
144 |
+
if self.schedule == 'linear':
|
145 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
146 |
+
Delta = self.beta_0 ** 2 + tmp
|
147 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
148 |
+
elif self.schedule == 'discrete':
|
149 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
150 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
|
151 |
+
torch.flip(self.t_array.to(lamb.device), [1]))
|
152 |
+
return t.reshape((-1,))
|
153 |
+
else:
|
154 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
155 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
|
156 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
157 |
+
t = t_fn(log_alpha)
|
158 |
+
return t
|
159 |
+
|
160 |
+
|
161 |
+
def model_wrapper(
|
162 |
+
model,
|
163 |
+
noise_schedule,
|
164 |
+
model_type="noise",
|
165 |
+
model_kwargs={},
|
166 |
+
guidance_type="uncond",
|
167 |
+
condition=None,
|
168 |
+
unconditional_condition=None,
|
169 |
+
guidance_scale=1.,
|
170 |
+
classifier_fn=None,
|
171 |
+
classifier_kwargs={},
|
172 |
+
):
|
173 |
+
"""Create a wrapper function for the noise prediction model.
|
174 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
175 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
176 |
+
We support four types of the diffusion model by setting `model_type`:
|
177 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
178 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
179 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
180 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
181 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
182 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
183 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
184 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
185 |
+
|
186 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
187 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
188 |
+
```
|
189 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
190 |
+
```
|
191 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
192 |
+
1. "uncond": unconditional sampling by DPMs.
|
193 |
+
The input `model` has the following format:
|
194 |
+
``
|
195 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
196 |
+
``
|
197 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
198 |
+
The input `model` has the following format:
|
199 |
+
``
|
200 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
201 |
+
``
|
202 |
+
The input `classifier_fn` has the following format:
|
203 |
+
``
|
204 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
205 |
+
``
|
206 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
207 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
208 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
209 |
+
The input `model` has the following format:
|
210 |
+
``
|
211 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
212 |
+
``
|
213 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
214 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
215 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
216 |
+
|
217 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
218 |
+
or continuous-time labels (i.e. epsilon to T).
|
219 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
220 |
+
``
|
221 |
+
def model_fn(x, t_continuous) -> noise:
|
222 |
+
t_input = get_model_input_time(t_continuous)
|
223 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
224 |
+
``
|
225 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
226 |
+
===============================================================
|
227 |
+
Args:
|
228 |
+
model: A diffusion model with the corresponding format described above.
|
229 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
230 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
231 |
+
"noise" or "x_start" or "v" or "score".
|
232 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
233 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
234 |
+
"uncond" or "classifier" or "classifier-free".
|
235 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
236 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
237 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
238 |
+
Only used for "classifier-free" guidance type.
|
239 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
240 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
241 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
242 |
+
Returns:
|
243 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
244 |
+
"""
|
245 |
+
|
246 |
+
def get_model_input_time(t_continuous):
|
247 |
+
"""
|
248 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
249 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
250 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
251 |
+
"""
|
252 |
+
if noise_schedule.schedule == 'discrete':
|
253 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
254 |
+
else:
|
255 |
+
return t_continuous
|
256 |
+
|
257 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
258 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
259 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
260 |
+
t_input = get_model_input_time(t_continuous)
|
261 |
+
if cond is None:
|
262 |
+
output = model(x, t_input, **model_kwargs)
|
263 |
+
else:
|
264 |
+
output = model(x, t_input, cond, **model_kwargs)
|
265 |
+
if model_type == "noise":
|
266 |
+
return output
|
267 |
+
elif model_type == "x_start":
|
268 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
269 |
+
dims = x.dim()
|
270 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
271 |
+
elif model_type == "v":
|
272 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
273 |
+
dims = x.dim()
|
274 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
275 |
+
elif model_type == "score":
|
276 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
277 |
+
dims = x.dim()
|
278 |
+
return -expand_dims(sigma_t, dims) * output
|
279 |
+
|
280 |
+
def cond_grad_fn(x, t_input):
|
281 |
+
"""
|
282 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
283 |
+
"""
|
284 |
+
with torch.enable_grad():
|
285 |
+
x_in = x.detach().requires_grad_(True)
|
286 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
287 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
288 |
+
|
289 |
+
def model_fn(x, t_continuous):
|
290 |
+
"""
|
291 |
+
The noise predicition model function that is used for DPM-Solver.
|
292 |
+
"""
|
293 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
294 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
295 |
+
if guidance_type == "uncond":
|
296 |
+
return noise_pred_fn(x, t_continuous)
|
297 |
+
elif guidance_type == "classifier":
|
298 |
+
assert classifier_fn is not None
|
299 |
+
t_input = get_model_input_time(t_continuous)
|
300 |
+
cond_grad = cond_grad_fn(x, t_input)
|
301 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
302 |
+
noise = noise_pred_fn(x, t_continuous)
|
303 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
304 |
+
elif guidance_type == "classifier-free":
|
305 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
306 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
307 |
+
else:
|
308 |
+
x_in = torch.cat([x] * 2)
|
309 |
+
t_in = torch.cat([t_continuous] * 2)
|
310 |
+
c_in = torch.cat([unconditional_condition, condition])
|
311 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
312 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
313 |
+
|
314 |
+
assert model_type in ["noise", "x_start", "v"]
|
315 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
316 |
+
return model_fn
|
317 |
+
|
318 |
+
|
319 |
+
class DPM_Solver:
|
320 |
+
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
321 |
+
"""Construct a DPM-Solver.
|
322 |
+
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
323 |
+
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
324 |
+
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
325 |
+
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
326 |
+
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
327 |
+
Args:
|
328 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
329 |
+
``
|
330 |
+
def model_fn(x, t_continuous):
|
331 |
+
return noise
|
332 |
+
``
|
333 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
334 |
+
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
335 |
+
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
336 |
+
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
337 |
+
|
338 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
339 |
+
"""
|
340 |
+
self.model = model_fn
|
341 |
+
self.noise_schedule = noise_schedule
|
342 |
+
self.predict_x0 = predict_x0
|
343 |
+
self.thresholding = thresholding
|
344 |
+
self.max_val = max_val
|
345 |
+
|
346 |
+
def noise_prediction_fn(self, x, t):
|
347 |
+
"""
|
348 |
+
Return the noise prediction model.
|
349 |
+
"""
|
350 |
+
return self.model(x, t)
|
351 |
+
|
352 |
+
def data_prediction_fn(self, x, t):
|
353 |
+
"""
|
354 |
+
Return the data prediction model (with thresholding).
|
355 |
+
"""
|
356 |
+
noise = self.noise_prediction_fn(x, t)
|
357 |
+
dims = x.dim()
|
358 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
359 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
360 |
+
if self.thresholding:
|
361 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
362 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
363 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
364 |
+
x0 = torch.clamp(x0, -s, s) / s
|
365 |
+
return x0
|
366 |
+
|
367 |
+
def model_fn(self, x, t):
|
368 |
+
"""
|
369 |
+
Convert the model to the noise prediction model or the data prediction model.
|
370 |
+
"""
|
371 |
+
if self.predict_x0:
|
372 |
+
return self.data_prediction_fn(x, t)
|
373 |
+
else:
|
374 |
+
return self.noise_prediction_fn(x, t)
|
375 |
+
|
376 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
377 |
+
"""Compute the intermediate time steps for sampling.
|
378 |
+
Args:
|
379 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
380 |
+
- 'logSNR': uniform logSNR for the time steps.
|
381 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
382 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
383 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
384 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
385 |
+
N: A `int`. The total number of the spacing of the time steps.
|
386 |
+
device: A torch device.
|
387 |
+
Returns:
|
388 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
389 |
+
"""
|
390 |
+
if skip_type == 'logSNR':
|
391 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
392 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
393 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
394 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
395 |
+
elif skip_type == 'time_uniform':
|
396 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
397 |
+
elif skip_type == 'time_quadratic':
|
398 |
+
t_order = 2
|
399 |
+
t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
|
400 |
+
return t
|
401 |
+
else:
|
402 |
+
raise ValueError(
|
403 |
+
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
404 |
+
|
405 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
406 |
+
"""
|
407 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
408 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
409 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
410 |
+
- If order == 1:
|
411 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
412 |
+
- If order == 2:
|
413 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
414 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
415 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
416 |
+
- If order == 3:
|
417 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
418 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
419 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
420 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
421 |
+
============================================
|
422 |
+
Args:
|
423 |
+
order: A `int`. The max order for the solver (2 or 3).
|
424 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
425 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
426 |
+
- 'logSNR': uniform logSNR for the time steps.
|
427 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
428 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
429 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
430 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
431 |
+
device: A torch device.
|
432 |
+
Returns:
|
433 |
+
orders: A list of the solver order of each step.
|
434 |
+
"""
|
435 |
+
if order == 3:
|
436 |
+
K = steps // 3 + 1
|
437 |
+
if steps % 3 == 0:
|
438 |
+
orders = [3, ] * (K - 2) + [2, 1]
|
439 |
+
elif steps % 3 == 1:
|
440 |
+
orders = [3, ] * (K - 1) + [1]
|
441 |
+
else:
|
442 |
+
orders = [3, ] * (K - 1) + [2]
|
443 |
+
elif order == 2:
|
444 |
+
if steps % 2 == 0:
|
445 |
+
K = steps // 2
|
446 |
+
orders = [2, ] * K
|
447 |
+
else:
|
448 |
+
K = steps // 2 + 1
|
449 |
+
orders = [2, ] * (K - 1) + [1]
|
450 |
+
elif order == 1:
|
451 |
+
K = 1
|
452 |
+
orders = [1, ] * steps
|
453 |
+
else:
|
454 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
455 |
+
if skip_type == 'logSNR':
|
456 |
+
# To reproduce the results in DPM-Solver paper
|
457 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
458 |
+
else:
|
459 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
|
460 |
+
torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
|
461 |
+
return timesteps_outer, orders
|
462 |
+
|
463 |
+
def denoise_to_zero_fn(self, x, s):
|
464 |
+
"""
|
465 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
466 |
+
"""
|
467 |
+
return self.data_prediction_fn(x, s)
|
468 |
+
|
469 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
470 |
+
"""
|
471 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
472 |
+
Args:
|
473 |
+
x: A pytorch tensor. The initial value at time `s`.
|
474 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
475 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
476 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
477 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
478 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
479 |
+
Returns:
|
480 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
481 |
+
"""
|
482 |
+
ns = self.noise_schedule
|
483 |
+
dims = x.dim()
|
484 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
485 |
+
h = lambda_t - lambda_s
|
486 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
487 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
488 |
+
alpha_t = torch.exp(log_alpha_t)
|
489 |
+
|
490 |
+
if self.predict_x0:
|
491 |
+
phi_1 = torch.expm1(-h)
|
492 |
+
if model_s is None:
|
493 |
+
model_s = self.model_fn(x, s)
|
494 |
+
x_t = (
|
495 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
496 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
497 |
+
)
|
498 |
+
if return_intermediate:
|
499 |
+
return x_t, {'model_s': model_s}
|
500 |
+
else:
|
501 |
+
return x_t
|
502 |
+
else:
|
503 |
+
phi_1 = torch.expm1(h)
|
504 |
+
if model_s is None:
|
505 |
+
model_s = self.model_fn(x, s)
|
506 |
+
x_t = (
|
507 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
508 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
509 |
+
)
|
510 |
+
if return_intermediate:
|
511 |
+
return x_t, {'model_s': model_s}
|
512 |
+
else:
|
513 |
+
return x_t
|
514 |
+
|
515 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
|
516 |
+
solver_type='dpm_solver'):
|
517 |
+
"""
|
518 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
519 |
+
Args:
|
520 |
+
x: A pytorch tensor. The initial value at time `s`.
|
521 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
522 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
523 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
524 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
525 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
526 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
527 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
528 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
529 |
+
Returns:
|
530 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
531 |
+
"""
|
532 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
533 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
534 |
+
if r1 is None:
|
535 |
+
r1 = 0.5
|
536 |
+
ns = self.noise_schedule
|
537 |
+
dims = x.dim()
|
538 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
539 |
+
h = lambda_t - lambda_s
|
540 |
+
lambda_s1 = lambda_s + r1 * h
|
541 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
542 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
|
543 |
+
s1), ns.marginal_log_mean_coeff(t)
|
544 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
545 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
546 |
+
|
547 |
+
if self.predict_x0:
|
548 |
+
phi_11 = torch.expm1(-r1 * h)
|
549 |
+
phi_1 = torch.expm1(-h)
|
550 |
+
|
551 |
+
if model_s is None:
|
552 |
+
model_s = self.model_fn(x, s)
|
553 |
+
x_s1 = (
|
554 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
555 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
556 |
+
)
|
557 |
+
model_s1 = self.model_fn(x_s1, s1)
|
558 |
+
if solver_type == 'dpm_solver':
|
559 |
+
x_t = (
|
560 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
561 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
562 |
+
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
563 |
+
)
|
564 |
+
elif solver_type == 'taylor':
|
565 |
+
x_t = (
|
566 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
567 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
568 |
+
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
|
569 |
+
model_s1 - model_s)
|
570 |
+
)
|
571 |
+
else:
|
572 |
+
phi_11 = torch.expm1(r1 * h)
|
573 |
+
phi_1 = torch.expm1(h)
|
574 |
+
|
575 |
+
if model_s is None:
|
576 |
+
model_s = self.model_fn(x, s)
|
577 |
+
x_s1 = (
|
578 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
579 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
580 |
+
)
|
581 |
+
model_s1 = self.model_fn(x_s1, s1)
|
582 |
+
if solver_type == 'dpm_solver':
|
583 |
+
x_t = (
|
584 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
585 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
586 |
+
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
587 |
+
)
|
588 |
+
elif solver_type == 'taylor':
|
589 |
+
x_t = (
|
590 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
591 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
592 |
+
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
593 |
+
)
|
594 |
+
if return_intermediate:
|
595 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
596 |
+
else:
|
597 |
+
return x_t
|
598 |
+
|
599 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
|
600 |
+
return_intermediate=False, solver_type='dpm_solver'):
|
601 |
+
"""
|
602 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
603 |
+
Args:
|
604 |
+
x: A pytorch tensor. The initial value at time `s`.
|
605 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
606 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
607 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
608 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
609 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
610 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
611 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
612 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
613 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
614 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
615 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
616 |
+
Returns:
|
617 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
618 |
+
"""
|
619 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
620 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
621 |
+
if r1 is None:
|
622 |
+
r1 = 1. / 3.
|
623 |
+
if r2 is None:
|
624 |
+
r2 = 2. / 3.
|
625 |
+
ns = self.noise_schedule
|
626 |
+
dims = x.dim()
|
627 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
628 |
+
h = lambda_t - lambda_s
|
629 |
+
lambda_s1 = lambda_s + r1 * h
|
630 |
+
lambda_s2 = lambda_s + r2 * h
|
631 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
632 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
633 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
|
634 |
+
s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
635 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
|
636 |
+
s2), ns.marginal_std(t)
|
637 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
638 |
+
|
639 |
+
if self.predict_x0:
|
640 |
+
phi_11 = torch.expm1(-r1 * h)
|
641 |
+
phi_12 = torch.expm1(-r2 * h)
|
642 |
+
phi_1 = torch.expm1(-h)
|
643 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
644 |
+
phi_2 = phi_1 / h + 1.
|
645 |
+
phi_3 = phi_2 / h - 0.5
|
646 |
+
|
647 |
+
if model_s is None:
|
648 |
+
model_s = self.model_fn(x, s)
|
649 |
+
if model_s1 is None:
|
650 |
+
x_s1 = (
|
651 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
652 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
653 |
+
)
|
654 |
+
model_s1 = self.model_fn(x_s1, s1)
|
655 |
+
x_s2 = (
|
656 |
+
expand_dims(sigma_s2 / sigma_s, dims) * x
|
657 |
+
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
658 |
+
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
659 |
+
)
|
660 |
+
model_s2 = self.model_fn(x_s2, s2)
|
661 |
+
if solver_type == 'dpm_solver':
|
662 |
+
x_t = (
|
663 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
664 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
665 |
+
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
666 |
+
)
|
667 |
+
elif solver_type == 'taylor':
|
668 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
669 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
670 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
671 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
672 |
+
x_t = (
|
673 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
674 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
675 |
+
+ expand_dims(alpha_t * phi_2, dims) * D1
|
676 |
+
- expand_dims(alpha_t * phi_3, dims) * D2
|
677 |
+
)
|
678 |
+
else:
|
679 |
+
phi_11 = torch.expm1(r1 * h)
|
680 |
+
phi_12 = torch.expm1(r2 * h)
|
681 |
+
phi_1 = torch.expm1(h)
|
682 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
683 |
+
phi_2 = phi_1 / h - 1.
|
684 |
+
phi_3 = phi_2 / h - 0.5
|
685 |
+
|
686 |
+
if model_s is None:
|
687 |
+
model_s = self.model_fn(x, s)
|
688 |
+
if model_s1 is None:
|
689 |
+
x_s1 = (
|
690 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
691 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
692 |
+
)
|
693 |
+
model_s1 = self.model_fn(x_s1, s1)
|
694 |
+
x_s2 = (
|
695 |
+
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
696 |
+
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
697 |
+
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
698 |
+
)
|
699 |
+
model_s2 = self.model_fn(x_s2, s2)
|
700 |
+
if solver_type == 'dpm_solver':
|
701 |
+
x_t = (
|
702 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
703 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
704 |
+
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
705 |
+
)
|
706 |
+
elif solver_type == 'taylor':
|
707 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
708 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
709 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
710 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
711 |
+
x_t = (
|
712 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
713 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
714 |
+
- expand_dims(sigma_t * phi_2, dims) * D1
|
715 |
+
- expand_dims(sigma_t * phi_3, dims) * D2
|
716 |
+
)
|
717 |
+
|
718 |
+
if return_intermediate:
|
719 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
720 |
+
else:
|
721 |
+
return x_t
|
722 |
+
|
723 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
724 |
+
"""
|
725 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
726 |
+
Args:
|
727 |
+
x: A pytorch tensor. The initial value at time `s`.
|
728 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
729 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
730 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
731 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
732 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
733 |
+
Returns:
|
734 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
735 |
+
"""
|
736 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
737 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
738 |
+
ns = self.noise_schedule
|
739 |
+
dims = x.dim()
|
740 |
+
model_prev_1, model_prev_0 = model_prev_list
|
741 |
+
t_prev_1, t_prev_0 = t_prev_list
|
742 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
|
743 |
+
t_prev_0), ns.marginal_lambda(t)
|
744 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
745 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
746 |
+
alpha_t = torch.exp(log_alpha_t)
|
747 |
+
|
748 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
749 |
+
h = lambda_t - lambda_prev_0
|
750 |
+
r0 = h_0 / h
|
751 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
752 |
+
if self.predict_x0:
|
753 |
+
if solver_type == 'dpm_solver':
|
754 |
+
x_t = (
|
755 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
756 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
757 |
+
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
758 |
+
)
|
759 |
+
elif solver_type == 'taylor':
|
760 |
+
x_t = (
|
761 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
762 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
763 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
764 |
+
)
|
765 |
+
else:
|
766 |
+
if solver_type == 'dpm_solver':
|
767 |
+
x_t = (
|
768 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
769 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
770 |
+
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
771 |
+
)
|
772 |
+
elif solver_type == 'taylor':
|
773 |
+
x_t = (
|
774 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
775 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
776 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
777 |
+
)
|
778 |
+
return x_t
|
779 |
+
|
780 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
781 |
+
"""
|
782 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
783 |
+
Args:
|
784 |
+
x: A pytorch tensor. The initial value at time `s`.
|
785 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
786 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
787 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
788 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
789 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
790 |
+
Returns:
|
791 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
792 |
+
"""
|
793 |
+
ns = self.noise_schedule
|
794 |
+
dims = x.dim()
|
795 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
796 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
797 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
|
798 |
+
t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
799 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
800 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
801 |
+
alpha_t = torch.exp(log_alpha_t)
|
802 |
+
|
803 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
804 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
805 |
+
h = lambda_t - lambda_prev_0
|
806 |
+
r0, r1 = h_0 / h, h_1 / h
|
807 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
808 |
+
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
809 |
+
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
810 |
+
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
811 |
+
if self.predict_x0:
|
812 |
+
x_t = (
|
813 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
814 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
815 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
816 |
+
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
|
817 |
+
)
|
818 |
+
else:
|
819 |
+
x_t = (
|
820 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
821 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
822 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
823 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
|
824 |
+
)
|
825 |
+
return x_t
|
826 |
+
|
827 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
|
828 |
+
r2=None):
|
829 |
+
"""
|
830 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
831 |
+
Args:
|
832 |
+
x: A pytorch tensor. The initial value at time `s`.
|
833 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
834 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
835 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
836 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
837 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
838 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
839 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
840 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
841 |
+
Returns:
|
842 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
843 |
+
"""
|
844 |
+
if order == 1:
|
845 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
846 |
+
elif order == 2:
|
847 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
|
848 |
+
solver_type=solver_type, r1=r1)
|
849 |
+
elif order == 3:
|
850 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
|
851 |
+
solver_type=solver_type, r1=r1, r2=r2)
|
852 |
+
else:
|
853 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
854 |
+
|
855 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
856 |
+
"""
|
857 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
858 |
+
Args:
|
859 |
+
x: A pytorch tensor. The initial value at time `s`.
|
860 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
861 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
862 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
863 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
864 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
865 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
866 |
+
Returns:
|
867 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
868 |
+
"""
|
869 |
+
if order == 1:
|
870 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
871 |
+
elif order == 2:
|
872 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
873 |
+
elif order == 3:
|
874 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
875 |
+
else:
|
876 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
877 |
+
|
878 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
|
879 |
+
solver_type='dpm_solver'):
|
880 |
+
"""
|
881 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
882 |
+
Args:
|
883 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
884 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
885 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
886 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
887 |
+
h_init: A `float`. The initial step size (for logSNR).
|
888 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
889 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
890 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
891 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
892 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
893 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
894 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
895 |
+
Returns:
|
896 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
897 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
898 |
+
"""
|
899 |
+
ns = self.noise_schedule
|
900 |
+
s = t_T * torch.ones((x.shape[0],)).to(x)
|
901 |
+
lambda_s = ns.marginal_lambda(s)
|
902 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
903 |
+
h = h_init * torch.ones_like(s).to(x)
|
904 |
+
x_prev = x
|
905 |
+
nfe = 0
|
906 |
+
if order == 2:
|
907 |
+
r1 = 0.5
|
908 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
909 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
910 |
+
solver_type=solver_type,
|
911 |
+
**kwargs)
|
912 |
+
elif order == 3:
|
913 |
+
r1, r2 = 1. / 3., 2. / 3.
|
914 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
915 |
+
return_intermediate=True,
|
916 |
+
solver_type=solver_type)
|
917 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
|
918 |
+
solver_type=solver_type,
|
919 |
+
**kwargs)
|
920 |
+
else:
|
921 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
922 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
923 |
+
t = ns.inverse_lambda(lambda_s + h)
|
924 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
925 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
926 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
927 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
928 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
929 |
+
if torch.all(E <= 1.):
|
930 |
+
x = x_higher
|
931 |
+
s = t
|
932 |
+
x_prev = x_lower
|
933 |
+
lambda_s = ns.marginal_lambda(s)
|
934 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
935 |
+
nfe += order
|
936 |
+
print('adaptive solver nfe', nfe)
|
937 |
+
return x
|
938 |
+
|
939 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
940 |
+
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
941 |
+
atol=0.0078, rtol=0.05,
|
942 |
+
):
|
943 |
+
"""
|
944 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
945 |
+
=====================================================
|
946 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
947 |
+
- 'singlestep':
|
948 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
949 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
950 |
+
The total number of function evaluations (NFE) == `steps`.
|
951 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
952 |
+
- If `order` == 1:
|
953 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
954 |
+
- If `order` == 2:
|
955 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
956 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
957 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
958 |
+
- If `order` == 3:
|
959 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
960 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
961 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
962 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
963 |
+
- 'multistep':
|
964 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
965 |
+
We initialize the first `order` values by lower order multistep solvers.
|
966 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
967 |
+
Denote K = steps.
|
968 |
+
- If `order` == 1:
|
969 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
970 |
+
- If `order` == 2:
|
971 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
972 |
+
- If `order` == 3:
|
973 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
974 |
+
- 'singlestep_fixed':
|
975 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
976 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
977 |
+
- 'adaptive':
|
978 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
979 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
980 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
981 |
+
(NFE) and the sample quality.
|
982 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
983 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
984 |
+
=====================================================
|
985 |
+
Some advices for choosing the algorithm:
|
986 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
987 |
+
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
988 |
+
e.g.
|
989 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
990 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
991 |
+
skip_type='time_uniform', method='singlestep')
|
992 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
993 |
+
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
994 |
+
e.g.
|
995 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
996 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
997 |
+
skip_type='time_uniform', method='multistep')
|
998 |
+
We support three types of `skip_type`:
|
999 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1000 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1001 |
+
- 'time_quadratic': quadratic time for the time steps.
|
1002 |
+
=====================================================
|
1003 |
+
Args:
|
1004 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
1005 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1006 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
1007 |
+
t_start: A `float`. The starting time of the sampling.
|
1008 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1009 |
+
t_end: A `float`. The ending time of the sampling.
|
1010 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1011 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1012 |
+
For discrete-time DPMs:
|
1013 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1014 |
+
For continuous-time DPMs:
|
1015 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1016 |
+
order: A `int`. The order of DPM-Solver.
|
1017 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1018 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1019 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
1020 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
1021 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
1022 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
1023 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
1024 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
1025 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
1026 |
+
it for high-resolutional images.
|
1027 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
1028 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
1029 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
1030 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
1031 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
1032 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1033 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1034 |
+
Returns:
|
1035 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1036 |
+
"""
|
1037 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1038 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
1039 |
+
device = x.device
|
1040 |
+
if method == 'adaptive':
|
1041 |
+
with torch.no_grad():
|
1042 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
|
1043 |
+
solver_type=solver_type)
|
1044 |
+
elif method == 'multistep':
|
1045 |
+
assert steps >= order
|
1046 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1047 |
+
assert timesteps.shape[0] - 1 == steps
|
1048 |
+
with torch.no_grad():
|
1049 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
1050 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
1051 |
+
t_prev_list = [vec_t]
|
1052 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
1053 |
+
for init_order in tqdm(range(1, order), desc="DPM init order"):
|
1054 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
1055 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
|
1056 |
+
solver_type=solver_type)
|
1057 |
+
model_prev_list.append(self.model_fn(x, vec_t))
|
1058 |
+
t_prev_list.append(vec_t)
|
1059 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1060 |
+
for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
|
1061 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
1062 |
+
if lower_order_final and steps < 15:
|
1063 |
+
step_order = min(order, steps + 1 - step)
|
1064 |
+
else:
|
1065 |
+
step_order = order
|
1066 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
|
1067 |
+
solver_type=solver_type)
|
1068 |
+
for i in range(order - 1):
|
1069 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
1070 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
1071 |
+
t_prev_list[-1] = vec_t
|
1072 |
+
# We do not need to evaluate the final model value.
|
1073 |
+
if step < steps:
|
1074 |
+
model_prev_list[-1] = self.model_fn(x, vec_t)
|
1075 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
1076 |
+
if method == 'singlestep':
|
1077 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
|
1078 |
+
skip_type=skip_type,
|
1079 |
+
t_T=t_T, t_0=t_0,
|
1080 |
+
device=device)
|
1081 |
+
elif method == 'singlestep_fixed':
|
1082 |
+
K = steps // order
|
1083 |
+
orders = [order, ] * K
|
1084 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1085 |
+
for i, order in enumerate(orders):
|
1086 |
+
t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
|
1087 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
|
1088 |
+
N=order, device=device)
|
1089 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1090 |
+
vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
|
1091 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
1092 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1093 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1094 |
+
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1095 |
+
if denoise_to_zero:
|
1096 |
+
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
1097 |
+
return x
|
1098 |
+
|
1099 |
+
|
1100 |
+
#############################################################
|
1101 |
+
# other utility functions
|
1102 |
+
#############################################################
|
1103 |
+
|
1104 |
+
def interpolate_fn(x, xp, yp):
|
1105 |
+
"""
|
1106 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1107 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1108 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1109 |
+
Args:
|
1110 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1111 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1112 |
+
yp: PyTorch tensor with shape [C, K].
|
1113 |
+
Returns:
|
1114 |
+
The function values f(x), with shape [N, C].
|
1115 |
+
"""
|
1116 |
+
N, K = x.shape[0], xp.shape[1]
|
1117 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1118 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1119 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
1120 |
+
cand_start_idx = x_idx - 1
|
1121 |
+
start_idx = torch.where(
|
1122 |
+
torch.eq(x_idx, 0),
|
1123 |
+
torch.tensor(1, device=x.device),
|
1124 |
+
torch.where(
|
1125 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1126 |
+
),
|
1127 |
+
)
|
1128 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1129 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1130 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1131 |
+
start_idx2 = torch.where(
|
1132 |
+
torch.eq(x_idx, 0),
|
1133 |
+
torch.tensor(0, device=x.device),
|
1134 |
+
torch.where(
|
1135 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1136 |
+
),
|
1137 |
+
)
|
1138 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1139 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1140 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1141 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1142 |
+
return cand
|
1143 |
+
|
1144 |
+
|
1145 |
+
def expand_dims(v, dims):
|
1146 |
+
"""
|
1147 |
+
Expand the tensor `v` to the dim `dims`.
|
1148 |
+
Args:
|
1149 |
+
`v`: a PyTorch tensor with shape [N].
|
1150 |
+
`dim`: a `int`.
|
1151 |
+
Returns:
|
1152 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1153 |
+
"""
|
1154 |
+
return v[(...,) + (None,) * (dims - 1)]
|
model_lib/ControlNet/ldm/models/diffusion/dpm_solver/sampler.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
5 |
+
|
6 |
+
|
7 |
+
MODEL_TYPES = {
|
8 |
+
"eps": "noise",
|
9 |
+
"v": "v"
|
10 |
+
}
|
11 |
+
|
12 |
+
|
13 |
+
class DPMSolverSampler(object):
|
14 |
+
def __init__(self, model, **kwargs):
|
15 |
+
super().__init__()
|
16 |
+
self.model = model
|
17 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
18 |
+
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
19 |
+
|
20 |
+
def register_buffer(self, name, attr):
|
21 |
+
if type(attr) == torch.Tensor:
|
22 |
+
if attr.device != torch.device("cuda"):
|
23 |
+
attr = attr.to(torch.device("cuda"))
|
24 |
+
setattr(self, name, attr)
|
25 |
+
|
26 |
+
@torch.no_grad()
|
27 |
+
def sample(self,
|
28 |
+
S,
|
29 |
+
batch_size,
|
30 |
+
shape,
|
31 |
+
conditioning=None,
|
32 |
+
callback=None,
|
33 |
+
normals_sequence=None,
|
34 |
+
img_callback=None,
|
35 |
+
quantize_x0=False,
|
36 |
+
eta=0.,
|
37 |
+
mask=None,
|
38 |
+
x0=None,
|
39 |
+
temperature=1.,
|
40 |
+
noise_dropout=0.,
|
41 |
+
score_corrector=None,
|
42 |
+
corrector_kwargs=None,
|
43 |
+
verbose=True,
|
44 |
+
x_T=None,
|
45 |
+
log_every_t=100,
|
46 |
+
unconditional_guidance_scale=1.,
|
47 |
+
unconditional_conditioning=None,
|
48 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
49 |
+
**kwargs
|
50 |
+
):
|
51 |
+
if conditioning is not None:
|
52 |
+
if isinstance(conditioning, dict):
|
53 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
54 |
+
if cbs != batch_size:
|
55 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
56 |
+
else:
|
57 |
+
if conditioning.shape[0] != batch_size:
|
58 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
59 |
+
|
60 |
+
# sampling
|
61 |
+
C, H, W = shape
|
62 |
+
size = (batch_size, C, H, W)
|
63 |
+
|
64 |
+
print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
65 |
+
|
66 |
+
device = self.model.betas.device
|
67 |
+
if x_T is None:
|
68 |
+
img = torch.randn(size, device=device)
|
69 |
+
else:
|
70 |
+
img = x_T
|
71 |
+
|
72 |
+
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
73 |
+
|
74 |
+
model_fn = model_wrapper(
|
75 |
+
lambda x, t, c: self.model.apply_model(x, t, c),
|
76 |
+
ns,
|
77 |
+
model_type=MODEL_TYPES[self.model.parameterization],
|
78 |
+
guidance_type="classifier-free",
|
79 |
+
condition=conditioning,
|
80 |
+
unconditional_condition=unconditional_conditioning,
|
81 |
+
guidance_scale=unconditional_guidance_scale,
|
82 |
+
)
|
83 |
+
|
84 |
+
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
85 |
+
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
|
86 |
+
|
87 |
+
return x.to(device), None
|
model_lib/ControlNet/ldm/models/diffusion/plms.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
9 |
+
from ldm.models.diffusion.sampling_util import norm_thresholding
|
10 |
+
|
11 |
+
|
12 |
+
class PLMSSampler(object):
|
13 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.model = model
|
16 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
17 |
+
self.schedule = schedule
|
18 |
+
|
19 |
+
def register_buffer(self, name, attr):
|
20 |
+
if type(attr) == torch.Tensor:
|
21 |
+
if attr.device != torch.device("cuda"):
|
22 |
+
attr = attr.to(torch.device("cuda"))
|
23 |
+
setattr(self, name, attr)
|
24 |
+
|
25 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
26 |
+
if ddim_eta != 0:
|
27 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
28 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
29 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
30 |
+
alphas_cumprod = self.model.alphas_cumprod
|
31 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
32 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
33 |
+
|
34 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
35 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
36 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
37 |
+
|
38 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
39 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
43 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
44 |
+
|
45 |
+
# ddim sampling parameters
|
46 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
47 |
+
ddim_timesteps=self.ddim_timesteps,
|
48 |
+
eta=ddim_eta,verbose=verbose)
|
49 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
50 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
51 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
52 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
53 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
54 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
55 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
56 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
57 |
+
|
58 |
+
@torch.no_grad()
|
59 |
+
def sample(self,
|
60 |
+
S,
|
61 |
+
batch_size,
|
62 |
+
shape,
|
63 |
+
conditioning=None,
|
64 |
+
callback=None,
|
65 |
+
normals_sequence=None,
|
66 |
+
img_callback=None,
|
67 |
+
quantize_x0=False,
|
68 |
+
eta=0.,
|
69 |
+
mask=None,
|
70 |
+
x0=None,
|
71 |
+
temperature=1.,
|
72 |
+
noise_dropout=0.,
|
73 |
+
score_corrector=None,
|
74 |
+
corrector_kwargs=None,
|
75 |
+
verbose=True,
|
76 |
+
x_T=None,
|
77 |
+
log_every_t=100,
|
78 |
+
unconditional_guidance_scale=1.,
|
79 |
+
unconditional_conditioning=None,
|
80 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
81 |
+
dynamic_threshold=None,
|
82 |
+
**kwargs
|
83 |
+
):
|
84 |
+
if conditioning is not None:
|
85 |
+
if isinstance(conditioning, dict):
|
86 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
87 |
+
if cbs != batch_size:
|
88 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
89 |
+
else:
|
90 |
+
if conditioning.shape[0] != batch_size:
|
91 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
92 |
+
|
93 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
94 |
+
# sampling
|
95 |
+
C, H, W = shape
|
96 |
+
size = (batch_size, C, H, W)
|
97 |
+
print(f'Data shape for PLMS sampling is {size}')
|
98 |
+
|
99 |
+
samples, intermediates = self.plms_sampling(conditioning, size,
|
100 |
+
callback=callback,
|
101 |
+
img_callback=img_callback,
|
102 |
+
quantize_denoised=quantize_x0,
|
103 |
+
mask=mask, x0=x0,
|
104 |
+
ddim_use_original_steps=False,
|
105 |
+
noise_dropout=noise_dropout,
|
106 |
+
temperature=temperature,
|
107 |
+
score_corrector=score_corrector,
|
108 |
+
corrector_kwargs=corrector_kwargs,
|
109 |
+
x_T=x_T,
|
110 |
+
log_every_t=log_every_t,
|
111 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
112 |
+
unconditional_conditioning=unconditional_conditioning,
|
113 |
+
dynamic_threshold=dynamic_threshold,
|
114 |
+
)
|
115 |
+
return samples, intermediates
|
116 |
+
|
117 |
+
@torch.no_grad()
|
118 |
+
def plms_sampling(self, cond, shape,
|
119 |
+
x_T=None, ddim_use_original_steps=False,
|
120 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
121 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
122 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
123 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
124 |
+
dynamic_threshold=None):
|
125 |
+
device = self.model.betas.device
|
126 |
+
b = shape[0]
|
127 |
+
if x_T is None:
|
128 |
+
img = torch.randn(shape, device=device)
|
129 |
+
else:
|
130 |
+
img = x_T
|
131 |
+
|
132 |
+
if timesteps is None:
|
133 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
134 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
135 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
136 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
137 |
+
|
138 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
139 |
+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
140 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
141 |
+
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
142 |
+
|
143 |
+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
144 |
+
old_eps = []
|
145 |
+
|
146 |
+
for i, step in enumerate(iterator):
|
147 |
+
index = total_steps - i - 1
|
148 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
149 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
150 |
+
|
151 |
+
if mask is not None:
|
152 |
+
assert x0 is not None
|
153 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
154 |
+
img = img_orig * mask + (1. - mask) * img
|
155 |
+
|
156 |
+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
157 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
158 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
159 |
+
corrector_kwargs=corrector_kwargs,
|
160 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
161 |
+
unconditional_conditioning=unconditional_conditioning,
|
162 |
+
old_eps=old_eps, t_next=ts_next,
|
163 |
+
dynamic_threshold=dynamic_threshold)
|
164 |
+
img, pred_x0, e_t = outs
|
165 |
+
old_eps.append(e_t)
|
166 |
+
if len(old_eps) >= 4:
|
167 |
+
old_eps.pop(0)
|
168 |
+
if callback: callback(i)
|
169 |
+
if img_callback: img_callback(pred_x0, i)
|
170 |
+
|
171 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
172 |
+
intermediates['x_inter'].append(img)
|
173 |
+
intermediates['pred_x0'].append(pred_x0)
|
174 |
+
|
175 |
+
return img, intermediates
|
176 |
+
|
177 |
+
@torch.no_grad()
|
178 |
+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
179 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
180 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
|
181 |
+
dynamic_threshold=None):
|
182 |
+
b, *_, device = *x.shape, x.device
|
183 |
+
|
184 |
+
def get_model_output(x, t):
|
185 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
186 |
+
e_t = self.model.apply_model(x, t, c)
|
187 |
+
else:
|
188 |
+
x_in = torch.cat([x] * 2)
|
189 |
+
t_in = torch.cat([t] * 2)
|
190 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
191 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
192 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
193 |
+
|
194 |
+
if score_corrector is not None:
|
195 |
+
assert self.model.parameterization == "eps"
|
196 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
197 |
+
|
198 |
+
return e_t
|
199 |
+
|
200 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
201 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
202 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
203 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
204 |
+
|
205 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
206 |
+
# select parameters corresponding to the currently considered timestep
|
207 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
208 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
209 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
210 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
211 |
+
|
212 |
+
# current prediction for x_0
|
213 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
214 |
+
if quantize_denoised:
|
215 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
216 |
+
if dynamic_threshold is not None:
|
217 |
+
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
218 |
+
# direction pointing to x_t
|
219 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
220 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
221 |
+
if noise_dropout > 0.:
|
222 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
223 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
224 |
+
return x_prev, pred_x0
|
225 |
+
|
226 |
+
e_t = get_model_output(x, t)
|
227 |
+
if len(old_eps) == 0:
|
228 |
+
# Pseudo Improved Euler (2nd order)
|
229 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
230 |
+
e_t_next = get_model_output(x_prev, t_next)
|
231 |
+
e_t_prime = (e_t + e_t_next) / 2
|
232 |
+
elif len(old_eps) == 1:
|
233 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
234 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
235 |
+
elif len(old_eps) == 2:
|
236 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
237 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
238 |
+
elif len(old_eps) >= 3:
|
239 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
240 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
241 |
+
|
242 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
243 |
+
|
244 |
+
return x_prev, pred_x0, e_t
|
model_lib/ControlNet/ldm/models/diffusion/sampling_util.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def append_dims(x, target_dims):
|
6 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
7 |
+
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
8 |
+
dims_to_append = target_dims - x.ndim
|
9 |
+
if dims_to_append < 0:
|
10 |
+
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
11 |
+
return x[(...,) + (None,) * dims_to_append]
|
12 |
+
|
13 |
+
|
14 |
+
def norm_thresholding(x0, value):
|
15 |
+
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
16 |
+
return x0 * (value / s)
|
17 |
+
|
18 |
+
|
19 |
+
def spatial_norm_thresholding(x0, value):
|
20 |
+
# b c h w
|
21 |
+
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
22 |
+
return x0 * (value / s)
|
model_lib/ControlNet/ldm/modules/__pycache__/attention.cpython-39.pyc
ADDED
Binary file (11 kB). View file
|
|
model_lib/ControlNet/ldm/modules/__pycache__/ema.cpython-39.pyc
ADDED
Binary file (3.25 kB). View file
|
|
model_lib/ControlNet/ldm/modules/__pycache__/motion_module.cpython-39.pyc
ADDED
Binary file (8.6 kB). View file
|
|
model_lib/ControlNet/ldm/modules/attention.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
# from turtle import forward
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import nn, einsum
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
from typing import Optional, Any
|
9 |
+
import pdb
|
10 |
+
from model_lib.ControlNet.ldm.modules.diffusionmodules.util import checkpoint
|
11 |
+
|
12 |
+
|
13 |
+
try:
|
14 |
+
import xformers
|
15 |
+
import xformers.ops
|
16 |
+
XFORMERS_IS_AVAILBLE = True
|
17 |
+
except:
|
18 |
+
XFORMERS_IS_AVAILBLE = False
|
19 |
+
|
20 |
+
# CrossAttn precision handling
|
21 |
+
import os
|
22 |
+
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
23 |
+
|
24 |
+
def exists(val):
|
25 |
+
return val is not None
|
26 |
+
|
27 |
+
|
28 |
+
def uniq(arr):
|
29 |
+
return{el: True for el in arr}.keys()
|
30 |
+
|
31 |
+
|
32 |
+
def default(val, d):
|
33 |
+
if exists(val):
|
34 |
+
return val
|
35 |
+
return d() if isfunction(d) else d
|
36 |
+
|
37 |
+
|
38 |
+
def max_neg_value(t):
|
39 |
+
return -torch.finfo(t.dtype).max
|
40 |
+
|
41 |
+
|
42 |
+
def init_(tensor):
|
43 |
+
dim = tensor.shape[-1]
|
44 |
+
std = 1 / math.sqrt(dim)
|
45 |
+
tensor.uniform_(-std, std)
|
46 |
+
return tensor
|
47 |
+
|
48 |
+
|
49 |
+
# feedforward
|
50 |
+
class GEGLU(nn.Module):
|
51 |
+
def __init__(self, dim_in, dim_out):
|
52 |
+
super().__init__()
|
53 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
57 |
+
return x * F.gelu(gate)
|
58 |
+
|
59 |
+
|
60 |
+
class FeedForward(nn.Module):
|
61 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
62 |
+
super().__init__()
|
63 |
+
inner_dim = int(dim * mult)
|
64 |
+
dim_out = default(dim_out, dim)
|
65 |
+
project_in = nn.Sequential(
|
66 |
+
nn.Linear(dim, inner_dim),
|
67 |
+
nn.GELU()
|
68 |
+
) if not glu else GEGLU(dim, inner_dim)
|
69 |
+
|
70 |
+
self.net = nn.Sequential(
|
71 |
+
project_in,
|
72 |
+
nn.Dropout(dropout),
|
73 |
+
nn.Linear(inner_dim, dim_out)
|
74 |
+
)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
return self.net(x)
|
78 |
+
|
79 |
+
|
80 |
+
def zero_module(module):
|
81 |
+
"""
|
82 |
+
Zero out the parameters of a module and return it.
|
83 |
+
"""
|
84 |
+
for p in module.parameters():
|
85 |
+
p.detach().zero_()
|
86 |
+
return module
|
87 |
+
|
88 |
+
|
89 |
+
def Normalize(in_channels):
|
90 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
91 |
+
|
92 |
+
|
93 |
+
class SpatialSelfAttention(nn.Module):
|
94 |
+
def __init__(self, in_channels):
|
95 |
+
super().__init__()
|
96 |
+
self.in_channels = in_channels
|
97 |
+
|
98 |
+
self.norm = Normalize(in_channels)
|
99 |
+
self.q = torch.nn.Conv2d(in_channels,
|
100 |
+
in_channels,
|
101 |
+
kernel_size=1,
|
102 |
+
stride=1,
|
103 |
+
padding=0)
|
104 |
+
self.k = torch.nn.Conv2d(in_channels,
|
105 |
+
in_channels,
|
106 |
+
kernel_size=1,
|
107 |
+
stride=1,
|
108 |
+
padding=0)
|
109 |
+
self.v = torch.nn.Conv2d(in_channels,
|
110 |
+
in_channels,
|
111 |
+
kernel_size=1,
|
112 |
+
stride=1,
|
113 |
+
padding=0)
|
114 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
115 |
+
in_channels,
|
116 |
+
kernel_size=1,
|
117 |
+
stride=1,
|
118 |
+
padding=0)
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
h_ = x
|
122 |
+
h_ = self.norm(h_)
|
123 |
+
q = self.q(h_)
|
124 |
+
k = self.k(h_)
|
125 |
+
v = self.v(h_)
|
126 |
+
|
127 |
+
# compute attention
|
128 |
+
b,c,h,w = q.shape
|
129 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
130 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
131 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
132 |
+
|
133 |
+
w_ = w_ * (int(c)**(-0.5))
|
134 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
135 |
+
|
136 |
+
# attend to values
|
137 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
138 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
139 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
140 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
141 |
+
h_ = self.proj_out(h_)
|
142 |
+
|
143 |
+
return x+h_
|
144 |
+
|
145 |
+
|
146 |
+
class CrossAttention(nn.Module):
|
147 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., checkpoint=False):
|
148 |
+
super().__init__()
|
149 |
+
inner_dim = dim_head * heads
|
150 |
+
context_dim = default(context_dim, query_dim)
|
151 |
+
|
152 |
+
self.scale = dim_head ** -0.5
|
153 |
+
self.heads = heads
|
154 |
+
|
155 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
156 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
157 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
158 |
+
|
159 |
+
self.to_out = nn.Sequential(
|
160 |
+
nn.Linear(inner_dim, query_dim),
|
161 |
+
nn.Dropout(dropout)
|
162 |
+
)
|
163 |
+
self.checkpoint = checkpoint
|
164 |
+
|
165 |
+
def forward(self, x, context=None):
|
166 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
167 |
+
|
168 |
+
def _forward(self, x, context=None):
|
169 |
+
h = self.heads
|
170 |
+
|
171 |
+
q = self.to_q(x)
|
172 |
+
context = default(context, x)
|
173 |
+
k = self.to_k(context)
|
174 |
+
v = self.to_v(context)
|
175 |
+
|
176 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
177 |
+
|
178 |
+
# force cast to fp32 to avoid overflowing
|
179 |
+
if _ATTN_PRECISION =="fp32":
|
180 |
+
with torch.autocast(enabled=False, device_type = 'cuda'):
|
181 |
+
q, k = q.float(), k.float()
|
182 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
183 |
+
else:
|
184 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
185 |
+
|
186 |
+
del q, k
|
187 |
+
|
188 |
+
# if exists(mask):
|
189 |
+
# mask = rearrange(mask, 'b ... -> b (...)')
|
190 |
+
# max_neg_value = -torch.finfo(sim.dtype).max
|
191 |
+
# mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
192 |
+
# sim.masked_fill_(~mask, max_neg_value)
|
193 |
+
|
194 |
+
# attention, what we cannot get enough of
|
195 |
+
sim = sim.softmax(dim=-1)
|
196 |
+
|
197 |
+
out = einsum('b i j, b j d -> b i d', sim, v)
|
198 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
199 |
+
return self.to_out(out)
|
200 |
+
|
201 |
+
|
202 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
203 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
204 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, checkpoint=False):
|
205 |
+
super().__init__()
|
206 |
+
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
207 |
+
f"{heads} heads.")
|
208 |
+
inner_dim = dim_head * heads
|
209 |
+
context_dim = default(context_dim, query_dim)
|
210 |
+
|
211 |
+
self.heads = heads
|
212 |
+
self.dim_head = dim_head
|
213 |
+
|
214 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
215 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
216 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
217 |
+
|
218 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
219 |
+
self.attention_op: Optional[Any] = None
|
220 |
+
self.checkpoint = checkpoint
|
221 |
+
|
222 |
+
def forward(self, x, context=None):
|
223 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
224 |
+
|
225 |
+
def _forward(self, x, context=None):
|
226 |
+
q = self.to_q(x)
|
227 |
+
context = default(context, x)
|
228 |
+
k = self.to_k(context)
|
229 |
+
v = self.to_v(context)
|
230 |
+
|
231 |
+
b, _, _ = q.shape
|
232 |
+
q, k, v = map(
|
233 |
+
lambda t: t.unsqueeze(3)
|
234 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
235 |
+
.permute(0, 2, 1, 3)
|
236 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
237 |
+
.contiguous(),
|
238 |
+
(q, k, v),
|
239 |
+
)
|
240 |
+
|
241 |
+
# actually compute the attention, what we cannot get enough of
|
242 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
243 |
+
|
244 |
+
out = (
|
245 |
+
out.unsqueeze(0)
|
246 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
247 |
+
.permute(0, 2, 1, 3)
|
248 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
249 |
+
)
|
250 |
+
return self.to_out(out)
|
251 |
+
|
252 |
+
|
253 |
+
class BasicTransformerBlock(nn.Module):
|
254 |
+
ATTENTION_MODES = {
|
255 |
+
"softmax": CrossAttention, # vanilla attention
|
256 |
+
"softmax-xformers": MemoryEfficientCrossAttention
|
257 |
+
}
|
258 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
259 |
+
disable_self_attn=False):
|
260 |
+
super().__init__()
|
261 |
+
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
262 |
+
assert attn_mode in self.ATTENTION_MODES
|
263 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
264 |
+
self.disable_self_attn = disable_self_attn
|
265 |
+
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, checkpoint=checkpoint,
|
266 |
+
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
267 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
268 |
+
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
|
269 |
+
heads=n_heads, dim_head=d_head, dropout=dropout, checkpoint=checkpoint,) # is self-attn if context is none
|
270 |
+
self.norm1 = nn.LayerNorm(dim)
|
271 |
+
self.norm2 = nn.LayerNorm(dim)
|
272 |
+
self.norm3 = nn.LayerNorm(dim)
|
273 |
+
self.checkpoint = checkpoint
|
274 |
+
|
275 |
+
# def forward(self, x, context=None, banks=None, attention_mode=None, attn_index=None,uc=False):
|
276 |
+
# return checkpoint(self._forward, (x, context, banks, attention_mode, attn_index,uc), self.parameters(), self.checkpoint)
|
277 |
+
|
278 |
+
def forward(self, x, context=None, banks=None, attention_mode=None, attn_index=None,uc=False):
|
279 |
+
|
280 |
+
if uc or attention_mode is None:
|
281 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
282 |
+
else:
|
283 |
+
|
284 |
+
x_norm1 = self.norm1(x)
|
285 |
+
self_attn1 = None
|
286 |
+
self_attention_context = x_norm1
|
287 |
+
if attention_mode == 'write':
|
288 |
+
bank = []
|
289 |
+
bank.append(self_attention_context)
|
290 |
+
# bank.append(self_attention_context.detach().clone())
|
291 |
+
|
292 |
+
banks.append(bank)
|
293 |
+
|
294 |
+
if self_attn1 is None:
|
295 |
+
|
296 |
+
self_attn1 = self.attn1(x_norm1, context=self_attention_context)
|
297 |
+
|
298 |
+
x = self_attn1 + x
|
299 |
+
|
300 |
+
|
301 |
+
elif attention_mode == 'read':
|
302 |
+
|
303 |
+
current_bank = banks[attn_index]
|
304 |
+
|
305 |
+
if len(current_bank) > 0:
|
306 |
+
tmp = [self_attention_context] + current_bank
|
307 |
+
self_attn1 = self.attn1(x_norm1, context=torch.cat([self_attention_context] + current_bank, dim=1))
|
308 |
+
|
309 |
+
if self_attn1 is None:
|
310 |
+
|
311 |
+
self_attn1 = self.attn1(x_norm1, context=self_attention_context)
|
312 |
+
|
313 |
+
x = self_attn1 + x
|
314 |
+
|
315 |
+
else:
|
316 |
+
raise NotImplementedError
|
317 |
+
|
318 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
319 |
+
x = self.ff(self.norm3(x)) + x
|
320 |
+
return x
|
321 |
+
|
322 |
+
|
323 |
+
class SpatialTransformer(nn.Module):
|
324 |
+
"""
|
325 |
+
Transformer block for image-like data.
|
326 |
+
First, project the input (aka embedding)
|
327 |
+
and reshape to b, t, d.
|
328 |
+
Then apply standard transformer action.
|
329 |
+
Finally, reshape to image
|
330 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
331 |
+
"""
|
332 |
+
def __init__(self, in_channels, n_heads, d_head,
|
333 |
+
depth=1, dropout=0., context_dim=None,
|
334 |
+
disable_self_attn=False, use_linear=False,
|
335 |
+
use_checkpoint=True):
|
336 |
+
super().__init__()
|
337 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
338 |
+
context_dim = [context_dim]
|
339 |
+
self.in_channels = in_channels
|
340 |
+
inner_dim = n_heads * d_head
|
341 |
+
self.norm = Normalize(in_channels)
|
342 |
+
if not use_linear:
|
343 |
+
self.proj_in = nn.Conv2d(in_channels,
|
344 |
+
inner_dim,
|
345 |
+
kernel_size=1,
|
346 |
+
stride=1,
|
347 |
+
padding=0)
|
348 |
+
else:
|
349 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
350 |
+
|
351 |
+
self.transformer_blocks = nn.ModuleList(
|
352 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
353 |
+
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
354 |
+
for d in range(depth)]
|
355 |
+
)
|
356 |
+
if not use_linear:
|
357 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
358 |
+
in_channels,
|
359 |
+
kernel_size=1,
|
360 |
+
stride=1,
|
361 |
+
padding=0))
|
362 |
+
else:
|
363 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
364 |
+
self.use_linear = use_linear
|
365 |
+
|
366 |
+
def forward(self, x, context=None, banks=None, attention_mode=None, attn_index=None,uc=False):
|
367 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
368 |
+
if not isinstance(context, list):
|
369 |
+
context = [context]
|
370 |
+
b, c, h, w = x.shape
|
371 |
+
x_in = x
|
372 |
+
x = self.norm(x)
|
373 |
+
if not self.use_linear:
|
374 |
+
x = self.proj_in(x)
|
375 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
376 |
+
if self.use_linear:
|
377 |
+
x = self.proj_in(x)
|
378 |
+
for i, block in enumerate(self.transformer_blocks):
|
379 |
+
x = block(x, context=context[i], banks=banks, attention_mode=attention_mode, attn_index=attn_index,uc=uc)
|
380 |
+
if self.use_linear:
|
381 |
+
x = self.proj_out(x)
|
382 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
383 |
+
if not self.use_linear:
|
384 |
+
x = self.proj_out(x)
|
385 |
+
return x + x_in
|
386 |
+
|
model_lib/ControlNet/ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
model_lib/ControlNet/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (236 Bytes). View file
|
|
model_lib/ControlNet/ldm/modules/diffusionmodules/__pycache__/model.cpython-39.pyc
ADDED
Binary file (21.6 kB). View file
|
|
model_lib/ControlNet/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-39.pyc
ADDED
Binary file (26.4 kB). View file
|
|
model_lib/ControlNet/ldm/modules/diffusionmodules/__pycache__/util.cpython-39.pyc
ADDED
Binary file (10.2 kB). View file
|
|
model_lib/ControlNet/ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,859 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
from typing import Optional, Any
|
8 |
+
|
9 |
+
from model_lib.ControlNet.ldm.modules.attention import MemoryEfficientCrossAttention
|
10 |
+
|
11 |
+
# try:
|
12 |
+
import xformers
|
13 |
+
import xformers.ops
|
14 |
+
XFORMERS_IS_AVAILBLE = True
|
15 |
+
# except:
|
16 |
+
# XFORMERS_IS_AVAILBLE = False
|
17 |
+
# print("No module 'xformers'. Proceeding without it.")
|
18 |
+
|
19 |
+
|
20 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
21 |
+
"""
|
22 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
23 |
+
From Fairseq.
|
24 |
+
Build sinusoidal embeddings.
|
25 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
26 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
27 |
+
"""
|
28 |
+
assert len(timesteps.shape) == 1
|
29 |
+
|
30 |
+
half_dim = embedding_dim // 2
|
31 |
+
emb = math.log(10000) / (half_dim - 1)
|
32 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
33 |
+
emb = emb.to(device=timesteps.device)
|
34 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
35 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
36 |
+
if embedding_dim % 2 == 1: # zero pad
|
37 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
38 |
+
return emb
|
39 |
+
|
40 |
+
|
41 |
+
def nonlinearity(x):
|
42 |
+
# swish
|
43 |
+
return x*torch.sigmoid(x)
|
44 |
+
|
45 |
+
|
46 |
+
def Normalize(in_channels, num_groups=32):
|
47 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
48 |
+
|
49 |
+
|
50 |
+
class Upsample(nn.Module):
|
51 |
+
def __init__(self, in_channels, with_conv):
|
52 |
+
super().__init__()
|
53 |
+
self.with_conv = with_conv
|
54 |
+
if self.with_conv:
|
55 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
56 |
+
in_channels,
|
57 |
+
kernel_size=3,
|
58 |
+
stride=1,
|
59 |
+
padding=1)
|
60 |
+
|
61 |
+
def nearest_neighbor_upsample(self, x: torch.Tensor, scale_factor: int):
|
62 |
+
# Upsample {x} (NCHW) by scale factor {scale_factor} using nearest neighbor interpolation.
|
63 |
+
s = scale_factor
|
64 |
+
return x.reshape(*x.shape, 1, 1).expand(*x.shape, s, s).transpose(-2, -3).reshape(*x.shape[:2], *(s * hw for hw in x.shape[2:]))
|
65 |
+
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
# x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
69 |
+
x = self.nearest_neighbor_upsample(x, scale_factor=2)
|
70 |
+
if self.with_conv:
|
71 |
+
x = self.conv(x)
|
72 |
+
return x
|
73 |
+
|
74 |
+
|
75 |
+
class Downsample(nn.Module):
|
76 |
+
def __init__(self, in_channels, with_conv):
|
77 |
+
super().__init__()
|
78 |
+
self.with_conv = with_conv
|
79 |
+
if self.with_conv:
|
80 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
81 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
82 |
+
in_channels,
|
83 |
+
kernel_size=3,
|
84 |
+
stride=2,
|
85 |
+
padding=0)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
if self.with_conv:
|
89 |
+
pad = (0,1,0,1)
|
90 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
91 |
+
x = self.conv(x)
|
92 |
+
else:
|
93 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
class ResnetBlock(nn.Module):
|
98 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
99 |
+
dropout, temb_channels=512):
|
100 |
+
super().__init__()
|
101 |
+
self.in_channels = in_channels
|
102 |
+
out_channels = in_channels if out_channels is None else out_channels
|
103 |
+
self.out_channels = out_channels
|
104 |
+
self.use_conv_shortcut = conv_shortcut
|
105 |
+
|
106 |
+
self.norm1 = Normalize(in_channels)
|
107 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
108 |
+
out_channels,
|
109 |
+
kernel_size=3,
|
110 |
+
stride=1,
|
111 |
+
padding=1)
|
112 |
+
if temb_channels > 0:
|
113 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
114 |
+
out_channels)
|
115 |
+
self.norm2 = Normalize(out_channels)
|
116 |
+
self.dropout = torch.nn.Dropout(dropout)
|
117 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
118 |
+
out_channels,
|
119 |
+
kernel_size=3,
|
120 |
+
stride=1,
|
121 |
+
padding=1)
|
122 |
+
if self.in_channels != self.out_channels:
|
123 |
+
if self.use_conv_shortcut:
|
124 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
125 |
+
out_channels,
|
126 |
+
kernel_size=3,
|
127 |
+
stride=1,
|
128 |
+
padding=1)
|
129 |
+
else:
|
130 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
131 |
+
out_channels,
|
132 |
+
kernel_size=1,
|
133 |
+
stride=1,
|
134 |
+
padding=0)
|
135 |
+
|
136 |
+
def forward(self, x, temb):
|
137 |
+
h = x
|
138 |
+
h = self.norm1(h)
|
139 |
+
h = nonlinearity(h)
|
140 |
+
h = self.conv1(h)
|
141 |
+
|
142 |
+
if temb is not None:
|
143 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
144 |
+
|
145 |
+
h = self.norm2(h)
|
146 |
+
h = nonlinearity(h)
|
147 |
+
h = self.dropout(h)
|
148 |
+
h = self.conv2(h)
|
149 |
+
|
150 |
+
if self.in_channels != self.out_channels:
|
151 |
+
if self.use_conv_shortcut:
|
152 |
+
x = self.conv_shortcut(x)
|
153 |
+
else:
|
154 |
+
x = self.nin_shortcut(x)
|
155 |
+
|
156 |
+
return x+h
|
157 |
+
|
158 |
+
|
159 |
+
class AttnBlock(nn.Module):
|
160 |
+
def __init__(self, in_channels):
|
161 |
+
super().__init__()
|
162 |
+
self.in_channels = in_channels
|
163 |
+
|
164 |
+
self.norm = Normalize(in_channels)
|
165 |
+
self.q = torch.nn.Conv2d(in_channels,
|
166 |
+
in_channels,
|
167 |
+
kernel_size=1,
|
168 |
+
stride=1,
|
169 |
+
padding=0)
|
170 |
+
self.k = torch.nn.Conv2d(in_channels,
|
171 |
+
in_channels,
|
172 |
+
kernel_size=1,
|
173 |
+
stride=1,
|
174 |
+
padding=0)
|
175 |
+
self.v = torch.nn.Conv2d(in_channels,
|
176 |
+
in_channels,
|
177 |
+
kernel_size=1,
|
178 |
+
stride=1,
|
179 |
+
padding=0)
|
180 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
181 |
+
in_channels,
|
182 |
+
kernel_size=1,
|
183 |
+
stride=1,
|
184 |
+
padding=0)
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
h_ = x
|
188 |
+
h_ = self.norm(h_)
|
189 |
+
q = self.q(h_)
|
190 |
+
k = self.k(h_)
|
191 |
+
v = self.v(h_)
|
192 |
+
|
193 |
+
# compute attention
|
194 |
+
b,c,h,w = q.shape
|
195 |
+
q = q.reshape(b,c,h*w)
|
196 |
+
q = q.permute(0,2,1) # b,hw,c
|
197 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
198 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
199 |
+
w_ = w_ * (int(c)**(-0.5))
|
200 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
201 |
+
|
202 |
+
# attend to values
|
203 |
+
v = v.reshape(b,c,h*w)
|
204 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
205 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
206 |
+
h_ = h_.reshape(b,c,h,w)
|
207 |
+
|
208 |
+
h_ = self.proj_out(h_)
|
209 |
+
|
210 |
+
return x+h_
|
211 |
+
|
212 |
+
class MemoryEfficientAttnBlock(nn.Module):
|
213 |
+
"""
|
214 |
+
Uses xformers efficient implementation,
|
215 |
+
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
216 |
+
Note: this is a single-head self-attention operation
|
217 |
+
"""
|
218 |
+
#
|
219 |
+
def __init__(self, in_channels):
|
220 |
+
super().__init__()
|
221 |
+
self.in_channels = in_channels
|
222 |
+
|
223 |
+
self.norm = Normalize(in_channels)
|
224 |
+
self.q = torch.nn.Conv2d(in_channels,
|
225 |
+
in_channels,
|
226 |
+
kernel_size=1,
|
227 |
+
stride=1,
|
228 |
+
padding=0)
|
229 |
+
self.k = torch.nn.Conv2d(in_channels,
|
230 |
+
in_channels,
|
231 |
+
kernel_size=1,
|
232 |
+
stride=1,
|
233 |
+
padding=0)
|
234 |
+
self.v = torch.nn.Conv2d(in_channels,
|
235 |
+
in_channels,
|
236 |
+
kernel_size=1,
|
237 |
+
stride=1,
|
238 |
+
padding=0)
|
239 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
240 |
+
in_channels,
|
241 |
+
kernel_size=1,
|
242 |
+
stride=1,
|
243 |
+
padding=0)
|
244 |
+
self.attention_op: Optional[Any] = None
|
245 |
+
|
246 |
+
def forward(self, x):
|
247 |
+
h_ = x
|
248 |
+
h_ = self.norm(h_)
|
249 |
+
q = self.q(h_)
|
250 |
+
k = self.k(h_)
|
251 |
+
v = self.v(h_)
|
252 |
+
|
253 |
+
# compute attention
|
254 |
+
B, C, H, W = q.shape
|
255 |
+
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
|
256 |
+
|
257 |
+
q, k, v = map(
|
258 |
+
lambda t: t.unsqueeze(3)
|
259 |
+
.reshape(B, t.shape[1], 1, C)
|
260 |
+
.permute(0, 2, 1, 3)
|
261 |
+
.reshape(B * 1, t.shape[1], C)
|
262 |
+
.contiguous(),
|
263 |
+
(q, k, v),
|
264 |
+
)
|
265 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
266 |
+
|
267 |
+
out = (
|
268 |
+
out.unsqueeze(0)
|
269 |
+
.reshape(B, 1, out.shape[1], C)
|
270 |
+
.permute(0, 2, 1, 3)
|
271 |
+
.reshape(B, out.shape[1], C)
|
272 |
+
)
|
273 |
+
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
|
274 |
+
out = self.proj_out(out)
|
275 |
+
return x+out
|
276 |
+
|
277 |
+
|
278 |
+
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
279 |
+
def forward(self, x, context=None, mask=None):
|
280 |
+
b, c, h, w = x.shape
|
281 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
282 |
+
out = super().forward(x, context=context, mask=mask)
|
283 |
+
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
|
284 |
+
return x + out
|
285 |
+
|
286 |
+
|
287 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
288 |
+
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
|
289 |
+
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
|
290 |
+
attn_type = "vanilla-xformers"
|
291 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
292 |
+
if attn_type == "vanilla":
|
293 |
+
assert attn_kwargs is None
|
294 |
+
return AttnBlock(in_channels)
|
295 |
+
elif attn_type == "vanilla-xformers":
|
296 |
+
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
297 |
+
return MemoryEfficientAttnBlock(in_channels)
|
298 |
+
elif type == "memory-efficient-cross-attn":
|
299 |
+
attn_kwargs["query_dim"] = in_channels
|
300 |
+
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
301 |
+
elif attn_type == "none":
|
302 |
+
return nn.Identity(in_channels)
|
303 |
+
else:
|
304 |
+
raise NotImplementedError()
|
305 |
+
|
306 |
+
|
307 |
+
class Model(nn.Module):
|
308 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
309 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
310 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
311 |
+
super().__init__()
|
312 |
+
if use_linear_attn: attn_type = "linear"
|
313 |
+
self.ch = ch
|
314 |
+
self.temb_ch = self.ch*4
|
315 |
+
self.num_resolutions = len(ch_mult)
|
316 |
+
self.num_res_blocks = num_res_blocks
|
317 |
+
self.resolution = resolution
|
318 |
+
self.in_channels = in_channels
|
319 |
+
|
320 |
+
self.use_timestep = use_timestep
|
321 |
+
if self.use_timestep:
|
322 |
+
# timestep embedding
|
323 |
+
self.temb = nn.Module()
|
324 |
+
self.temb.dense = nn.ModuleList([
|
325 |
+
torch.nn.Linear(self.ch,
|
326 |
+
self.temb_ch),
|
327 |
+
torch.nn.Linear(self.temb_ch,
|
328 |
+
self.temb_ch),
|
329 |
+
])
|
330 |
+
|
331 |
+
# downsampling
|
332 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
333 |
+
self.ch,
|
334 |
+
kernel_size=3,
|
335 |
+
stride=1,
|
336 |
+
padding=1)
|
337 |
+
|
338 |
+
curr_res = resolution
|
339 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
340 |
+
self.down = nn.ModuleList()
|
341 |
+
for i_level in range(self.num_resolutions):
|
342 |
+
block = nn.ModuleList()
|
343 |
+
attn = nn.ModuleList()
|
344 |
+
block_in = ch*in_ch_mult[i_level]
|
345 |
+
block_out = ch*ch_mult[i_level]
|
346 |
+
for i_block in range(self.num_res_blocks):
|
347 |
+
block.append(ResnetBlock(in_channels=block_in,
|
348 |
+
out_channels=block_out,
|
349 |
+
temb_channels=self.temb_ch,
|
350 |
+
dropout=dropout))
|
351 |
+
block_in = block_out
|
352 |
+
if curr_res in attn_resolutions:
|
353 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
354 |
+
down = nn.Module()
|
355 |
+
down.block = block
|
356 |
+
down.attn = attn
|
357 |
+
if i_level != self.num_resolutions-1:
|
358 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
359 |
+
curr_res = curr_res // 2
|
360 |
+
self.down.append(down)
|
361 |
+
|
362 |
+
# middle
|
363 |
+
self.mid = nn.Module()
|
364 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
365 |
+
out_channels=block_in,
|
366 |
+
temb_channels=self.temb_ch,
|
367 |
+
dropout=dropout)
|
368 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
369 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
370 |
+
out_channels=block_in,
|
371 |
+
temb_channels=self.temb_ch,
|
372 |
+
dropout=dropout)
|
373 |
+
|
374 |
+
# upsampling
|
375 |
+
self.up = nn.ModuleList()
|
376 |
+
for i_level in reversed(range(self.num_resolutions)):
|
377 |
+
block = nn.ModuleList()
|
378 |
+
attn = nn.ModuleList()
|
379 |
+
block_out = ch*ch_mult[i_level]
|
380 |
+
skip_in = ch*ch_mult[i_level]
|
381 |
+
for i_block in range(self.num_res_blocks+1):
|
382 |
+
if i_block == self.num_res_blocks:
|
383 |
+
skip_in = ch*in_ch_mult[i_level]
|
384 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
385 |
+
out_channels=block_out,
|
386 |
+
temb_channels=self.temb_ch,
|
387 |
+
dropout=dropout))
|
388 |
+
block_in = block_out
|
389 |
+
if curr_res in attn_resolutions:
|
390 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
391 |
+
up = nn.Module()
|
392 |
+
up.block = block
|
393 |
+
up.attn = attn
|
394 |
+
if i_level != 0:
|
395 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
396 |
+
curr_res = curr_res * 2
|
397 |
+
self.up.insert(0, up) # prepend to get consistent order
|
398 |
+
|
399 |
+
# end
|
400 |
+
self.norm_out = Normalize(block_in)
|
401 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
402 |
+
out_ch,
|
403 |
+
kernel_size=3,
|
404 |
+
stride=1,
|
405 |
+
padding=1)
|
406 |
+
|
407 |
+
def forward(self, x, t=None, context=None):
|
408 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
409 |
+
if context is not None:
|
410 |
+
# assume aligned context, cat along channel axis
|
411 |
+
x = torch.cat((x, context), dim=1)
|
412 |
+
if self.use_timestep:
|
413 |
+
# timestep embedding
|
414 |
+
assert t is not None
|
415 |
+
temb = get_timestep_embedding(t, self.ch)
|
416 |
+
temb = self.temb.dense[0](temb)
|
417 |
+
temb = nonlinearity(temb)
|
418 |
+
temb = self.temb.dense[1](temb)
|
419 |
+
else:
|
420 |
+
temb = None
|
421 |
+
|
422 |
+
# downsampling
|
423 |
+
hs = [self.conv_in(x)]
|
424 |
+
for i_level in range(self.num_resolutions):
|
425 |
+
for i_block in range(self.num_res_blocks):
|
426 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
427 |
+
if len(self.down[i_level].attn) > 0:
|
428 |
+
h = self.down[i_level].attn[i_block](h)
|
429 |
+
hs.append(h)
|
430 |
+
if i_level != self.num_resolutions-1:
|
431 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
432 |
+
|
433 |
+
# middle
|
434 |
+
h = hs[-1]
|
435 |
+
h = self.mid.block_1(h, temb)
|
436 |
+
h = self.mid.attn_1(h)
|
437 |
+
h = self.mid.block_2(h, temb)
|
438 |
+
|
439 |
+
# upsampling
|
440 |
+
for i_level in reversed(range(self.num_resolutions)):
|
441 |
+
for i_block in range(self.num_res_blocks+1):
|
442 |
+
h = self.up[i_level].block[i_block](
|
443 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
444 |
+
if len(self.up[i_level].attn) > 0:
|
445 |
+
h = self.up[i_level].attn[i_block](h)
|
446 |
+
if i_level != 0:
|
447 |
+
h = self.up[i_level].upsample(h)
|
448 |
+
|
449 |
+
# end
|
450 |
+
h = self.norm_out(h)
|
451 |
+
h = nonlinearity(h)
|
452 |
+
h = self.conv_out(h)
|
453 |
+
return h
|
454 |
+
|
455 |
+
def get_last_layer(self):
|
456 |
+
return self.conv_out.weight
|
457 |
+
|
458 |
+
|
459 |
+
class Encoder(nn.Module):
|
460 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
461 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
462 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
463 |
+
**ignore_kwargs):
|
464 |
+
super().__init__()
|
465 |
+
if use_linear_attn: attn_type = "linear"
|
466 |
+
self.ch = ch
|
467 |
+
self.temb_ch = 0
|
468 |
+
self.num_resolutions = len(ch_mult)
|
469 |
+
self.num_res_blocks = num_res_blocks
|
470 |
+
self.resolution = resolution
|
471 |
+
self.in_channels = in_channels
|
472 |
+
|
473 |
+
# downsampling
|
474 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
475 |
+
self.ch,
|
476 |
+
kernel_size=3,
|
477 |
+
stride=1,
|
478 |
+
padding=1)
|
479 |
+
|
480 |
+
curr_res = resolution
|
481 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
482 |
+
self.in_ch_mult = in_ch_mult
|
483 |
+
self.down = nn.ModuleList()
|
484 |
+
for i_level in range(self.num_resolutions):
|
485 |
+
block = nn.ModuleList()
|
486 |
+
attn = nn.ModuleList()
|
487 |
+
block_in = ch*in_ch_mult[i_level]
|
488 |
+
block_out = ch*ch_mult[i_level]
|
489 |
+
for i_block in range(self.num_res_blocks):
|
490 |
+
block.append(ResnetBlock(in_channels=block_in,
|
491 |
+
out_channels=block_out,
|
492 |
+
temb_channels=self.temb_ch,
|
493 |
+
dropout=dropout))
|
494 |
+
block_in = block_out
|
495 |
+
if curr_res in attn_resolutions:
|
496 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
497 |
+
down = nn.Module()
|
498 |
+
down.block = block
|
499 |
+
down.attn = attn
|
500 |
+
if i_level != self.num_resolutions-1:
|
501 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
502 |
+
curr_res = curr_res // 2
|
503 |
+
self.down.append(down)
|
504 |
+
|
505 |
+
# middle
|
506 |
+
self.mid = nn.Module()
|
507 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
508 |
+
out_channels=block_in,
|
509 |
+
temb_channels=self.temb_ch,
|
510 |
+
dropout=dropout)
|
511 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
512 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
513 |
+
out_channels=block_in,
|
514 |
+
temb_channels=self.temb_ch,
|
515 |
+
dropout=dropout)
|
516 |
+
|
517 |
+
# end
|
518 |
+
self.norm_out = Normalize(block_in)
|
519 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
520 |
+
2*z_channels if double_z else z_channels,
|
521 |
+
kernel_size=3,
|
522 |
+
stride=1,
|
523 |
+
padding=1)
|
524 |
+
|
525 |
+
def forward(self, x):
|
526 |
+
# timestep embedding
|
527 |
+
temb = None
|
528 |
+
|
529 |
+
# downsampling
|
530 |
+
hs = [self.conv_in(x)]
|
531 |
+
for i_level in range(self.num_resolutions):
|
532 |
+
for i_block in range(self.num_res_blocks):
|
533 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
534 |
+
if len(self.down[i_level].attn) > 0:
|
535 |
+
h = self.down[i_level].attn[i_block](h)
|
536 |
+
hs.append(h)
|
537 |
+
if i_level != self.num_resolutions-1:
|
538 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
539 |
+
|
540 |
+
# middle
|
541 |
+
h = hs[-1]
|
542 |
+
h = self.mid.block_1(h, temb)
|
543 |
+
h = self.mid.attn_1(h)
|
544 |
+
h = self.mid.block_2(h, temb)
|
545 |
+
|
546 |
+
# end
|
547 |
+
h = self.norm_out(h)
|
548 |
+
h = nonlinearity(h)
|
549 |
+
h = self.conv_out(h)
|
550 |
+
return h
|
551 |
+
|
552 |
+
|
553 |
+
class Decoder(nn.Module):
|
554 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
555 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
556 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
557 |
+
attn_type="vanilla", **ignorekwargs):
|
558 |
+
super().__init__()
|
559 |
+
if use_linear_attn: attn_type = "linear"
|
560 |
+
self.ch = ch
|
561 |
+
self.temb_ch = 0
|
562 |
+
self.num_resolutions = len(ch_mult)
|
563 |
+
self.num_res_blocks = num_res_blocks
|
564 |
+
self.resolution = resolution
|
565 |
+
self.in_channels = in_channels
|
566 |
+
self.give_pre_end = give_pre_end
|
567 |
+
self.tanh_out = tanh_out
|
568 |
+
|
569 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
570 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
571 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
572 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
573 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
574 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
575 |
+
self.z_shape, np.prod(self.z_shape)))
|
576 |
+
|
577 |
+
# z to block_in
|
578 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
579 |
+
block_in,
|
580 |
+
kernel_size=3,
|
581 |
+
stride=1,
|
582 |
+
padding=1)
|
583 |
+
|
584 |
+
# middle
|
585 |
+
self.mid = nn.Module()
|
586 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
587 |
+
out_channels=block_in,
|
588 |
+
temb_channels=self.temb_ch,
|
589 |
+
dropout=dropout)
|
590 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
591 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
592 |
+
out_channels=block_in,
|
593 |
+
temb_channels=self.temb_ch,
|
594 |
+
dropout=dropout)
|
595 |
+
|
596 |
+
# upsampling
|
597 |
+
self.up = nn.ModuleList()
|
598 |
+
for i_level in reversed(range(self.num_resolutions)):
|
599 |
+
block = nn.ModuleList()
|
600 |
+
attn = nn.ModuleList()
|
601 |
+
block_out = ch*ch_mult[i_level]
|
602 |
+
for i_block in range(self.num_res_blocks+1):
|
603 |
+
block.append(ResnetBlock(in_channels=block_in,
|
604 |
+
out_channels=block_out,
|
605 |
+
temb_channels=self.temb_ch,
|
606 |
+
dropout=dropout))
|
607 |
+
block_in = block_out
|
608 |
+
if curr_res in attn_resolutions:
|
609 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
610 |
+
up = nn.Module()
|
611 |
+
up.block = block
|
612 |
+
up.attn = attn
|
613 |
+
if i_level != 0:
|
614 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
615 |
+
curr_res = curr_res * 2
|
616 |
+
self.up.insert(0, up) # prepend to get consistent order
|
617 |
+
|
618 |
+
# end
|
619 |
+
self.norm_out = Normalize(block_in)
|
620 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
621 |
+
out_ch,
|
622 |
+
kernel_size=3,
|
623 |
+
stride=1,
|
624 |
+
padding=1)
|
625 |
+
|
626 |
+
def forward(self, z):
|
627 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
628 |
+
self.last_z_shape = z.shape
|
629 |
+
|
630 |
+
# timestep embedding
|
631 |
+
temb = None
|
632 |
+
|
633 |
+
# z to block_in
|
634 |
+
h = self.conv_in(z)
|
635 |
+
|
636 |
+
# middle
|
637 |
+
h = self.mid.block_1(h, temb)
|
638 |
+
h = self.mid.attn_1(h)
|
639 |
+
h = self.mid.block_2(h, temb)
|
640 |
+
|
641 |
+
# upsampling
|
642 |
+
for i_level in reversed(range(self.num_resolutions)):
|
643 |
+
for i_block in range(self.num_res_blocks+1):
|
644 |
+
h = self.up[i_level].block[i_block](h, temb)
|
645 |
+
if len(self.up[i_level].attn) > 0:
|
646 |
+
h = self.up[i_level].attn[i_block](h)
|
647 |
+
if i_level != 0:
|
648 |
+
h = self.up[i_level].upsample(h)
|
649 |
+
|
650 |
+
# end
|
651 |
+
if self.give_pre_end:
|
652 |
+
return h
|
653 |
+
|
654 |
+
h = self.norm_out(h)
|
655 |
+
h = nonlinearity(h)
|
656 |
+
h = self.conv_out(h)
|
657 |
+
if self.tanh_out:
|
658 |
+
h = torch.tanh(h)
|
659 |
+
return h
|
660 |
+
|
661 |
+
|
662 |
+
class SimpleDecoder(nn.Module):
|
663 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
664 |
+
super().__init__()
|
665 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
666 |
+
ResnetBlock(in_channels=in_channels,
|
667 |
+
out_channels=2 * in_channels,
|
668 |
+
temb_channels=0, dropout=0.0),
|
669 |
+
ResnetBlock(in_channels=2 * in_channels,
|
670 |
+
out_channels=4 * in_channels,
|
671 |
+
temb_channels=0, dropout=0.0),
|
672 |
+
ResnetBlock(in_channels=4 * in_channels,
|
673 |
+
out_channels=2 * in_channels,
|
674 |
+
temb_channels=0, dropout=0.0),
|
675 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
676 |
+
Upsample(in_channels, with_conv=True)])
|
677 |
+
# end
|
678 |
+
self.norm_out = Normalize(in_channels)
|
679 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
680 |
+
out_channels,
|
681 |
+
kernel_size=3,
|
682 |
+
stride=1,
|
683 |
+
padding=1)
|
684 |
+
|
685 |
+
def forward(self, x):
|
686 |
+
for i, layer in enumerate(self.model):
|
687 |
+
if i in [1,2,3]:
|
688 |
+
x = layer(x, None)
|
689 |
+
else:
|
690 |
+
x = layer(x)
|
691 |
+
|
692 |
+
h = self.norm_out(x)
|
693 |
+
h = nonlinearity(h)
|
694 |
+
x = self.conv_out(h)
|
695 |
+
return x
|
696 |
+
|
697 |
+
|
698 |
+
class UpsampleDecoder(nn.Module):
|
699 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
700 |
+
ch_mult=(2,2), dropout=0.0):
|
701 |
+
super().__init__()
|
702 |
+
# upsampling
|
703 |
+
self.temb_ch = 0
|
704 |
+
self.num_resolutions = len(ch_mult)
|
705 |
+
self.num_res_blocks = num_res_blocks
|
706 |
+
block_in = in_channels
|
707 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
708 |
+
self.res_blocks = nn.ModuleList()
|
709 |
+
self.upsample_blocks = nn.ModuleList()
|
710 |
+
for i_level in range(self.num_resolutions):
|
711 |
+
res_block = []
|
712 |
+
block_out = ch * ch_mult[i_level]
|
713 |
+
for i_block in range(self.num_res_blocks + 1):
|
714 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
715 |
+
out_channels=block_out,
|
716 |
+
temb_channels=self.temb_ch,
|
717 |
+
dropout=dropout))
|
718 |
+
block_in = block_out
|
719 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
720 |
+
if i_level != self.num_resolutions - 1:
|
721 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
722 |
+
curr_res = curr_res * 2
|
723 |
+
|
724 |
+
# end
|
725 |
+
self.norm_out = Normalize(block_in)
|
726 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
727 |
+
out_channels,
|
728 |
+
kernel_size=3,
|
729 |
+
stride=1,
|
730 |
+
padding=1)
|
731 |
+
|
732 |
+
def forward(self, x):
|
733 |
+
# upsampling
|
734 |
+
h = x
|
735 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
736 |
+
for i_block in range(self.num_res_blocks + 1):
|
737 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
738 |
+
if i_level != self.num_resolutions - 1:
|
739 |
+
h = self.upsample_blocks[k](h)
|
740 |
+
h = self.norm_out(h)
|
741 |
+
h = nonlinearity(h)
|
742 |
+
h = self.conv_out(h)
|
743 |
+
return h
|
744 |
+
|
745 |
+
|
746 |
+
class LatentRescaler(nn.Module):
|
747 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
748 |
+
super().__init__()
|
749 |
+
# residual block, interpolate, residual block
|
750 |
+
self.factor = factor
|
751 |
+
self.conv_in = nn.Conv2d(in_channels,
|
752 |
+
mid_channels,
|
753 |
+
kernel_size=3,
|
754 |
+
stride=1,
|
755 |
+
padding=1)
|
756 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
757 |
+
out_channels=mid_channels,
|
758 |
+
temb_channels=0,
|
759 |
+
dropout=0.0) for _ in range(depth)])
|
760 |
+
self.attn = AttnBlock(mid_channels)
|
761 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
762 |
+
out_channels=mid_channels,
|
763 |
+
temb_channels=0,
|
764 |
+
dropout=0.0) for _ in range(depth)])
|
765 |
+
|
766 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
767 |
+
out_channels,
|
768 |
+
kernel_size=1,
|
769 |
+
)
|
770 |
+
|
771 |
+
def forward(self, x):
|
772 |
+
x = self.conv_in(x)
|
773 |
+
for block in self.res_block1:
|
774 |
+
x = block(x, None)
|
775 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
776 |
+
x = self.attn(x)
|
777 |
+
for block in self.res_block2:
|
778 |
+
x = block(x, None)
|
779 |
+
x = self.conv_out(x)
|
780 |
+
return x
|
781 |
+
|
782 |
+
|
783 |
+
class MergedRescaleEncoder(nn.Module):
|
784 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
785 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
786 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
787 |
+
super().__init__()
|
788 |
+
intermediate_chn = ch * ch_mult[-1]
|
789 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
790 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
791 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
792 |
+
out_ch=None)
|
793 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
794 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
795 |
+
|
796 |
+
def forward(self, x):
|
797 |
+
x = self.encoder(x)
|
798 |
+
x = self.rescaler(x)
|
799 |
+
return x
|
800 |
+
|
801 |
+
|
802 |
+
class MergedRescaleDecoder(nn.Module):
|
803 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
804 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
805 |
+
super().__init__()
|
806 |
+
tmp_chn = z_channels*ch_mult[-1]
|
807 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
808 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
809 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
810 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
811 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
812 |
+
|
813 |
+
def forward(self, x):
|
814 |
+
x = self.rescaler(x)
|
815 |
+
x = self.decoder(x)
|
816 |
+
return x
|
817 |
+
|
818 |
+
|
819 |
+
class Upsampler(nn.Module):
|
820 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
821 |
+
super().__init__()
|
822 |
+
assert out_size >= in_size
|
823 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
824 |
+
factor_up = 1.+ (out_size % in_size)
|
825 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
826 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
827 |
+
out_channels=in_channels)
|
828 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
829 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
830 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
831 |
+
|
832 |
+
def forward(self, x):
|
833 |
+
x = self.rescaler(x)
|
834 |
+
x = self.decoder(x)
|
835 |
+
return x
|
836 |
+
|
837 |
+
|
838 |
+
class Resize(nn.Module):
|
839 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
840 |
+
super().__init__()
|
841 |
+
self.with_conv = learned
|
842 |
+
self.mode = mode
|
843 |
+
if self.with_conv:
|
844 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
845 |
+
raise NotImplementedError()
|
846 |
+
assert in_channels is not None
|
847 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
848 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
849 |
+
in_channels,
|
850 |
+
kernel_size=4,
|
851 |
+
stride=2,
|
852 |
+
padding=1)
|
853 |
+
|
854 |
+
def forward(self, x, scale_factor=1.0):
|
855 |
+
if scale_factor==1.0:
|
856 |
+
return x
|
857 |
+
else:
|
858 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
859 |
+
return x
|
model_lib/ControlNet/ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,1212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch as th
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import pdb
|
9 |
+
from model_lib.ControlNet.ldm.modules.diffusionmodules.util import (
|
10 |
+
checkpoint,
|
11 |
+
conv_nd,
|
12 |
+
linear,
|
13 |
+
avg_pool_nd,
|
14 |
+
zero_module,
|
15 |
+
normalization,
|
16 |
+
timestep_embedding,
|
17 |
+
)
|
18 |
+
from model_lib.ControlNet.ldm.modules.attention import SpatialTransformer
|
19 |
+
from model_lib.ControlNet.ldm.util import exists
|
20 |
+
from model_lib.ControlNet.ldm.modules.motion_module import get_motion_module, VanillaTemporalModule, TemporalTransformer3DModel
|
21 |
+
|
22 |
+
# dummy replace
|
23 |
+
def convert_module_to_f16(x):
|
24 |
+
pass
|
25 |
+
|
26 |
+
def convert_module_to_f32(x):
|
27 |
+
pass
|
28 |
+
|
29 |
+
|
30 |
+
## go
|
31 |
+
class AttentionPool2d(nn.Module):
|
32 |
+
"""
|
33 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
spacial_dim: int,
|
39 |
+
embed_dim: int,
|
40 |
+
num_heads_channels: int,
|
41 |
+
output_dim: int = None,
|
42 |
+
):
|
43 |
+
super().__init__()
|
44 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
45 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
46 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
47 |
+
self.num_heads = embed_dim // num_heads_channels
|
48 |
+
self.attention = QKVAttention(self.num_heads)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
b, c, *_spatial = x.shape
|
52 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
53 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
54 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
55 |
+
x = self.qkv_proj(x)
|
56 |
+
x = self.attention(x)
|
57 |
+
x = self.c_proj(x)
|
58 |
+
return x[:, :, 0]
|
59 |
+
|
60 |
+
|
61 |
+
class TimestepBlock(nn.Module):
|
62 |
+
"""
|
63 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
64 |
+
"""
|
65 |
+
|
66 |
+
@abstractmethod
|
67 |
+
def forward(self, x, emb):
|
68 |
+
"""
|
69 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
70 |
+
"""
|
71 |
+
|
72 |
+
|
73 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
74 |
+
"""
|
75 |
+
A sequential module that passes timestep embeddings to the children that
|
76 |
+
support it as an extra input.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def forward(self, x, emb, context=None, banks=None, attention_mode=None, attn_index=None, uc=False):
|
80 |
+
for layer in self:
|
81 |
+
|
82 |
+
if isinstance(layer, TimestepBlock):
|
83 |
+
# print("layer TimestepBlock")
|
84 |
+
x = layer(x, emb)
|
85 |
+
elif isinstance(layer, SpatialTransformer):
|
86 |
+
# print("layer SpatialTransformer")
|
87 |
+
if uc:
|
88 |
+
x = layer(x, context,uc=uc)
|
89 |
+
else:
|
90 |
+
# pdb.set_trace()
|
91 |
+
x = layer(x, context, banks, attention_mode, attn_index)
|
92 |
+
if attention_mode == 'read':
|
93 |
+
attn_index+=1
|
94 |
+
elif isinstance(layer, VanillaTemporalModule):
|
95 |
+
# print("layer Motion Module")
|
96 |
+
# pdb.set_trace()
|
97 |
+
x = layer(x, context)
|
98 |
+
else:
|
99 |
+
# print("layer others")
|
100 |
+
# pdb.set_trace()
|
101 |
+
x = layer(x)
|
102 |
+
|
103 |
+
if attention_mode == 'write':
|
104 |
+
return x
|
105 |
+
if attention_mode == 'read':
|
106 |
+
return x, attn_index
|
107 |
+
else:
|
108 |
+
return x
|
109 |
+
|
110 |
+
|
111 |
+
class Upsample(nn.Module):
|
112 |
+
"""
|
113 |
+
An upsampling layer with an optional convolution.
|
114 |
+
:param channels: channels in the inputs and outputs.
|
115 |
+
:param use_conv: a bool determining if a convolution is applied.
|
116 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
117 |
+
upsampling occurs in the inner-two dimensions.
|
118 |
+
"""
|
119 |
+
|
120 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
121 |
+
super().__init__()
|
122 |
+
self.channels = channels
|
123 |
+
self.out_channels = out_channels or channels
|
124 |
+
self.use_conv = use_conv
|
125 |
+
self.dims = dims
|
126 |
+
if use_conv:
|
127 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
128 |
+
|
129 |
+
def nearest_neighbor_upsample(self, x: th.Tensor, scale_factor: int):
|
130 |
+
# Upsample {x} (NCHW) by scale factor {scale_factor} using nearest neighbor interpolation.
|
131 |
+
s = scale_factor
|
132 |
+
return x.reshape(*x.shape, 1, 1).expand(*x.shape, s, s).transpose(-2, -3).reshape(*x.shape[:2], *(s * hw for hw in x.shape[2:]))
|
133 |
+
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
assert x.shape[1] == self.channels
|
137 |
+
if self.dims == 3:
|
138 |
+
x = F.interpolate(
|
139 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
# x = F.interpolate(x, scale_factor=2, mode="nearest")
|
143 |
+
x = self.nearest_neighbor_upsample(x, scale_factor=2)
|
144 |
+
|
145 |
+
if self.use_conv:
|
146 |
+
x = self.conv(x)
|
147 |
+
return x
|
148 |
+
|
149 |
+
class TransposedUpsample(nn.Module):
|
150 |
+
'Learned 2x upsampling without padding'
|
151 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
152 |
+
super().__init__()
|
153 |
+
self.channels = channels
|
154 |
+
self.out_channels = out_channels or channels
|
155 |
+
|
156 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
157 |
+
|
158 |
+
def forward(self,x):
|
159 |
+
return self.up(x)
|
160 |
+
|
161 |
+
|
162 |
+
class Downsample(nn.Module):
|
163 |
+
"""
|
164 |
+
A downsampling layer with an optional convolution.
|
165 |
+
:param channels: channels in the inputs and outputs.
|
166 |
+
:param use_conv: a bool determining if a convolution is applied.
|
167 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
168 |
+
downsampling occurs in the inner-two dimensions.
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
172 |
+
super().__init__()
|
173 |
+
self.channels = channels
|
174 |
+
self.out_channels = out_channels or channels
|
175 |
+
self.use_conv = use_conv
|
176 |
+
self.dims = dims
|
177 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
178 |
+
if use_conv:
|
179 |
+
self.op = conv_nd(
|
180 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
assert self.channels == self.out_channels
|
184 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
assert x.shape[1] == self.channels
|
188 |
+
return self.op(x)
|
189 |
+
|
190 |
+
|
191 |
+
class ResBlock(TimestepBlock):
|
192 |
+
"""
|
193 |
+
A residual block that can optionally change the number of channels.
|
194 |
+
:param channels: the number of input channels.
|
195 |
+
:param emb_channels: the number of timestep embedding channels.
|
196 |
+
:param dropout: the rate of dropout.
|
197 |
+
:param out_channels: if specified, the number of out channels.
|
198 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
199 |
+
convolution instead of a smaller 1x1 convolution to change the
|
200 |
+
channels in the skip connection.
|
201 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
202 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
203 |
+
:param up: if True, use this block for upsampling.
|
204 |
+
:param down: if True, use this block for downsampling.
|
205 |
+
"""
|
206 |
+
|
207 |
+
def __init__(
|
208 |
+
self,
|
209 |
+
channels,
|
210 |
+
emb_channels,
|
211 |
+
dropout,
|
212 |
+
out_channels=None,
|
213 |
+
use_conv=False,
|
214 |
+
use_scale_shift_norm=False,
|
215 |
+
dims=2,
|
216 |
+
use_checkpoint=False,
|
217 |
+
up=False,
|
218 |
+
down=False,
|
219 |
+
):
|
220 |
+
super().__init__()
|
221 |
+
self.channels = channels
|
222 |
+
self.emb_channels = emb_channels
|
223 |
+
self.dropout = dropout
|
224 |
+
self.out_channels = out_channels or channels
|
225 |
+
self.use_conv = use_conv
|
226 |
+
self.use_checkpoint = use_checkpoint
|
227 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
228 |
+
|
229 |
+
self.in_layers = nn.Sequential(
|
230 |
+
normalization(channels),
|
231 |
+
nn.SiLU(),
|
232 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
233 |
+
)
|
234 |
+
|
235 |
+
self.updown = up or down
|
236 |
+
|
237 |
+
if up:
|
238 |
+
self.h_upd = Upsample(channels, False, dims)
|
239 |
+
self.x_upd = Upsample(channels, False, dims)
|
240 |
+
elif down:
|
241 |
+
self.h_upd = Downsample(channels, False, dims)
|
242 |
+
self.x_upd = Downsample(channels, False, dims)
|
243 |
+
else:
|
244 |
+
self.h_upd = self.x_upd = nn.Identity()
|
245 |
+
|
246 |
+
self.emb_layers = nn.Sequential(
|
247 |
+
nn.SiLU(),
|
248 |
+
linear(
|
249 |
+
emb_channels,
|
250 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
251 |
+
),
|
252 |
+
)
|
253 |
+
self.out_layers = nn.Sequential(
|
254 |
+
normalization(self.out_channels),
|
255 |
+
nn.SiLU(),
|
256 |
+
nn.Dropout(p=dropout),
|
257 |
+
zero_module(
|
258 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
259 |
+
),
|
260 |
+
)
|
261 |
+
|
262 |
+
if self.out_channels == channels:
|
263 |
+
self.skip_connection = nn.Identity()
|
264 |
+
elif use_conv:
|
265 |
+
self.skip_connection = conv_nd(
|
266 |
+
dims, channels, self.out_channels, 3, padding=1
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
270 |
+
|
271 |
+
def forward(self, x, emb):
|
272 |
+
"""
|
273 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
274 |
+
:param x: an [N x C x ...] Tensor of features.
|
275 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
276 |
+
:return: an [N x C x ...] Tensor of outputs.
|
277 |
+
"""
|
278 |
+
return checkpoint(
|
279 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
280 |
+
)
|
281 |
+
|
282 |
+
|
283 |
+
def _forward(self, x, emb):
|
284 |
+
if self.updown:
|
285 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
286 |
+
h = in_rest(x)
|
287 |
+
h = self.h_upd(h)
|
288 |
+
x = self.x_upd(x)
|
289 |
+
h = in_conv(h)
|
290 |
+
else:
|
291 |
+
h = self.in_layers(x)
|
292 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
293 |
+
while len(emb_out.shape) < len(h.shape):
|
294 |
+
emb_out = emb_out[..., None]
|
295 |
+
if self.use_scale_shift_norm:
|
296 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
297 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
298 |
+
h = out_norm(h) * (1 + scale) + shift
|
299 |
+
h = out_rest(h)
|
300 |
+
else:
|
301 |
+
h = h + emb_out
|
302 |
+
h = self.out_layers(h)
|
303 |
+
return self.skip_connection(x) + h
|
304 |
+
|
305 |
+
class AttentionBlock(nn.Module):
|
306 |
+
"""
|
307 |
+
An attention block that allows spatial positions to attend to each other.
|
308 |
+
Originally ported from here, but adapted to the N-d case.
|
309 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
310 |
+
"""
|
311 |
+
|
312 |
+
def __init__(
|
313 |
+
self,
|
314 |
+
channels,
|
315 |
+
num_heads=1,
|
316 |
+
num_head_channels=-1,
|
317 |
+
use_checkpoint=False,
|
318 |
+
use_new_attention_order=False,
|
319 |
+
):
|
320 |
+
super().__init__()
|
321 |
+
self.channels = channels
|
322 |
+
if num_head_channels == -1:
|
323 |
+
self.num_heads = num_heads
|
324 |
+
else:
|
325 |
+
assert (
|
326 |
+
channels % num_head_channels == 0
|
327 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
328 |
+
self.num_heads = channels // num_head_channels
|
329 |
+
self.use_checkpoint = use_checkpoint
|
330 |
+
self.norm = normalization(channels)
|
331 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
332 |
+
if use_new_attention_order:
|
333 |
+
# split qkv before split heads
|
334 |
+
self.attention = QKVAttention(self.num_heads)
|
335 |
+
else:
|
336 |
+
# split heads before split qkv
|
337 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
338 |
+
|
339 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
340 |
+
|
341 |
+
def forward(self, x):
|
342 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
343 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
344 |
+
|
345 |
+
def _forward(self, x):
|
346 |
+
b, c, *spatial = x.shape
|
347 |
+
x = x.reshape(b, c, -1)
|
348 |
+
qkv = self.qkv(self.norm(x))
|
349 |
+
h = self.attention(qkv)
|
350 |
+
h = self.proj_out(h)
|
351 |
+
return (x + h).reshape(b, c, *spatial)
|
352 |
+
|
353 |
+
|
354 |
+
def count_flops_attn(model, _x, y):
|
355 |
+
"""
|
356 |
+
A counter for the `thop` package to count the operations in an
|
357 |
+
attention operation.
|
358 |
+
Meant to be used like:
|
359 |
+
macs, params = thop.profile(
|
360 |
+
model,
|
361 |
+
inputs=(inputs, timestamps),
|
362 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
363 |
+
)
|
364 |
+
"""
|
365 |
+
b, c, *spatial = y[0].shape
|
366 |
+
num_spatial = int(np.prod(spatial))
|
367 |
+
# We perform two matmuls with the same number of ops.
|
368 |
+
# The first computes the weight matrix, the second computes
|
369 |
+
# the combination of the value vectors.
|
370 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
371 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
372 |
+
|
373 |
+
|
374 |
+
class QKVAttentionLegacy(nn.Module):
|
375 |
+
"""
|
376 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
377 |
+
"""
|
378 |
+
|
379 |
+
def __init__(self, n_heads):
|
380 |
+
super().__init__()
|
381 |
+
self.n_heads = n_heads
|
382 |
+
|
383 |
+
def forward(self, qkv):
|
384 |
+
"""
|
385 |
+
Apply QKV attention.
|
386 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
387 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
388 |
+
"""
|
389 |
+
bs, width, length = qkv.shape
|
390 |
+
assert width % (3 * self.n_heads) == 0
|
391 |
+
ch = width // (3 * self.n_heads)
|
392 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
393 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
394 |
+
weight = th.einsum(
|
395 |
+
"bct,bcs->bts", q * scale, k * scale
|
396 |
+
) # More stable with f16 than dividing afterwards
|
397 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
398 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
399 |
+
return a.reshape(bs, -1, length)
|
400 |
+
|
401 |
+
@staticmethod
|
402 |
+
def count_flops(model, _x, y):
|
403 |
+
return count_flops_attn(model, _x, y)
|
404 |
+
|
405 |
+
|
406 |
+
class QKVAttention(nn.Module):
|
407 |
+
"""
|
408 |
+
A module which performs QKV attention and splits in a different order.
|
409 |
+
"""
|
410 |
+
|
411 |
+
def __init__(self, n_heads):
|
412 |
+
super().__init__()
|
413 |
+
self.n_heads = n_heads
|
414 |
+
|
415 |
+
def forward(self, qkv):
|
416 |
+
"""
|
417 |
+
Apply QKV attention.
|
418 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
419 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
420 |
+
"""
|
421 |
+
bs, width, length = qkv.shape
|
422 |
+
assert width % (3 * self.n_heads) == 0
|
423 |
+
ch = width // (3 * self.n_heads)
|
424 |
+
q, k, v = qkv.chunk(3, dim=1)
|
425 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
426 |
+
weight = th.einsum(
|
427 |
+
"bct,bcs->bts",
|
428 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
429 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
430 |
+
) # More stable with f16 than dividing afterwards
|
431 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
432 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
433 |
+
return a.reshape(bs, -1, length)
|
434 |
+
|
435 |
+
@staticmethod
|
436 |
+
def count_flops(model, _x, y):
|
437 |
+
return count_flops_attn(model, _x, y)
|
438 |
+
|
439 |
+
|
440 |
+
class UNetModel(nn.Module):
|
441 |
+
"""
|
442 |
+
The full UNet model with attention and timestep embedding.
|
443 |
+
:param in_channels: channels in the input Tensor.
|
444 |
+
:param model_channels: base channel count for the model.
|
445 |
+
:param out_channels: channels in the output Tensor.
|
446 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
447 |
+
:param attention_resolutions: a collection of downsample rates at which
|
448 |
+
attention will take place. May be a set, list, or tuple.
|
449 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
450 |
+
will be used.
|
451 |
+
:param dropout: the dropout probability.
|
452 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
453 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
454 |
+
downsampling.
|
455 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
456 |
+
:param num_classes: if specified (as an int), then this model will be
|
457 |
+
class-conditional with `num_classes` classes.
|
458 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
459 |
+
:param num_heads: the number of attention heads in each attention layer.
|
460 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
461 |
+
a fixed channel width per attention head.
|
462 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
463 |
+
of heads for upsampling. Deprecated.
|
464 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
465 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
466 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
467 |
+
increased efficiency.
|
468 |
+
"""
|
469 |
+
|
470 |
+
def __init__(
|
471 |
+
self,
|
472 |
+
image_size,
|
473 |
+
in_channels,
|
474 |
+
model_channels,
|
475 |
+
out_channels,
|
476 |
+
num_res_blocks,
|
477 |
+
attention_resolutions,
|
478 |
+
dropout=0,
|
479 |
+
channel_mult=(1, 2, 4, 8),
|
480 |
+
conv_resample=True,
|
481 |
+
dims=2,
|
482 |
+
num_classes=None,
|
483 |
+
use_checkpoint=False,
|
484 |
+
use_fp16=False,
|
485 |
+
num_heads=-1,
|
486 |
+
num_head_channels=-1,
|
487 |
+
num_heads_upsample=-1,
|
488 |
+
use_scale_shift_norm=False,
|
489 |
+
resblock_updown=False,
|
490 |
+
use_new_attention_order=False,
|
491 |
+
use_spatial_transformer=False, # custom transformer support
|
492 |
+
transformer_depth=1, # custom transformer support
|
493 |
+
context_dim=None, # custom transformer support
|
494 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
495 |
+
legacy=True,
|
496 |
+
disable_self_attentions=None,
|
497 |
+
num_attention_blocks=None,
|
498 |
+
disable_middle_self_attn=False,
|
499 |
+
use_linear_in_transformer=False,
|
500 |
+
):
|
501 |
+
super().__init__()
|
502 |
+
if use_spatial_transformer:
|
503 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
504 |
+
|
505 |
+
if context_dim is not None:
|
506 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
507 |
+
from omegaconf.listconfig import ListConfig
|
508 |
+
if type(context_dim) == ListConfig:
|
509 |
+
context_dim = list(context_dim)
|
510 |
+
|
511 |
+
if num_heads_upsample == -1:
|
512 |
+
num_heads_upsample = num_heads
|
513 |
+
|
514 |
+
if num_heads == -1:
|
515 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
516 |
+
|
517 |
+
if num_head_channels == -1:
|
518 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
519 |
+
|
520 |
+
self.image_size = image_size
|
521 |
+
self.in_channels = in_channels
|
522 |
+
self.model_channels = model_channels
|
523 |
+
self.out_channels = out_channels
|
524 |
+
if isinstance(num_res_blocks, int):
|
525 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
526 |
+
else:
|
527 |
+
if len(num_res_blocks) != len(channel_mult):
|
528 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
529 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
530 |
+
self.num_res_blocks = num_res_blocks
|
531 |
+
if disable_self_attentions is not None:
|
532 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
533 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
534 |
+
if num_attention_blocks is not None:
|
535 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
536 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
537 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
538 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
539 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
540 |
+
f"attention will still not be set.")
|
541 |
+
|
542 |
+
self.attention_resolutions = attention_resolutions
|
543 |
+
self.dropout = dropout
|
544 |
+
self.channel_mult = channel_mult
|
545 |
+
self.conv_resample = conv_resample
|
546 |
+
self.num_classes = num_classes
|
547 |
+
self.use_checkpoint = use_checkpoint
|
548 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
549 |
+
self.num_heads = num_heads
|
550 |
+
self.num_head_channels = num_head_channels
|
551 |
+
self.num_heads_upsample = num_heads_upsample
|
552 |
+
self.predict_codebook_ids = n_embed is not None
|
553 |
+
|
554 |
+
time_embed_dim = model_channels * 4
|
555 |
+
self.time_embed = nn.Sequential(
|
556 |
+
linear(model_channels, time_embed_dim),
|
557 |
+
nn.SiLU(),
|
558 |
+
linear(time_embed_dim, time_embed_dim),
|
559 |
+
)
|
560 |
+
|
561 |
+
if self.num_classes is not None:
|
562 |
+
if isinstance(self.num_classes, int):
|
563 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
564 |
+
elif self.num_classes == "continuous":
|
565 |
+
print("setting up linear c_adm embedding layer")
|
566 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
567 |
+
else:
|
568 |
+
raise ValueError()
|
569 |
+
|
570 |
+
self.input_blocks = nn.ModuleList(
|
571 |
+
[
|
572 |
+
TimestepEmbedSequential(
|
573 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
574 |
+
)
|
575 |
+
]
|
576 |
+
)
|
577 |
+
self._feature_size = model_channels
|
578 |
+
input_block_chans = [model_channels]
|
579 |
+
ch = model_channels
|
580 |
+
ds = 1
|
581 |
+
for level, mult in enumerate(channel_mult):
|
582 |
+
for nr in range(self.num_res_blocks[level]):
|
583 |
+
layers = [
|
584 |
+
ResBlock(
|
585 |
+
ch,
|
586 |
+
time_embed_dim,
|
587 |
+
dropout,
|
588 |
+
out_channels=mult * model_channels,
|
589 |
+
dims=dims,
|
590 |
+
use_checkpoint=use_checkpoint,
|
591 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
592 |
+
)
|
593 |
+
]
|
594 |
+
ch = mult * model_channels
|
595 |
+
if ds in attention_resolutions:
|
596 |
+
if num_head_channels == -1:
|
597 |
+
dim_head = ch // num_heads
|
598 |
+
else:
|
599 |
+
num_heads = ch // num_head_channels
|
600 |
+
dim_head = num_head_channels
|
601 |
+
if legacy:
|
602 |
+
#num_heads = 1
|
603 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
604 |
+
if exists(disable_self_attentions):
|
605 |
+
disabled_sa = disable_self_attentions[level]
|
606 |
+
else:
|
607 |
+
disabled_sa = False
|
608 |
+
|
609 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
610 |
+
layers.append(
|
611 |
+
AttentionBlock(
|
612 |
+
ch,
|
613 |
+
use_checkpoint=use_checkpoint,
|
614 |
+
num_heads=num_heads,
|
615 |
+
num_head_channels=dim_head,
|
616 |
+
use_new_attention_order=use_new_attention_order,
|
617 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
618 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
619 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
620 |
+
use_checkpoint=use_checkpoint
|
621 |
+
)
|
622 |
+
)
|
623 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
624 |
+
self._feature_size += ch
|
625 |
+
input_block_chans.append(ch)
|
626 |
+
if level != len(channel_mult) - 1:
|
627 |
+
out_ch = ch
|
628 |
+
self.input_blocks.append(
|
629 |
+
TimestepEmbedSequential(
|
630 |
+
ResBlock(
|
631 |
+
ch,
|
632 |
+
time_embed_dim,
|
633 |
+
dropout,
|
634 |
+
out_channels=out_ch,
|
635 |
+
dims=dims,
|
636 |
+
use_checkpoint=use_checkpoint,
|
637 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
638 |
+
down=True,
|
639 |
+
)
|
640 |
+
if resblock_updown
|
641 |
+
else Downsample(
|
642 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
643 |
+
)
|
644 |
+
)
|
645 |
+
)
|
646 |
+
ch = out_ch
|
647 |
+
input_block_chans.append(ch)
|
648 |
+
ds *= 2
|
649 |
+
self._feature_size += ch
|
650 |
+
|
651 |
+
if num_head_channels == -1:
|
652 |
+
dim_head = ch // num_heads
|
653 |
+
else:
|
654 |
+
num_heads = ch // num_head_channels
|
655 |
+
dim_head = num_head_channels
|
656 |
+
if legacy:
|
657 |
+
#num_heads = 1
|
658 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
659 |
+
self.middle_block = TimestepEmbedSequential(
|
660 |
+
ResBlock(
|
661 |
+
ch,
|
662 |
+
time_embed_dim,
|
663 |
+
dropout,
|
664 |
+
dims=dims,
|
665 |
+
use_checkpoint=use_checkpoint,
|
666 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
667 |
+
),
|
668 |
+
AttentionBlock(
|
669 |
+
ch,
|
670 |
+
use_checkpoint=use_checkpoint,
|
671 |
+
num_heads=num_heads,
|
672 |
+
num_head_channels=dim_head,
|
673 |
+
use_new_attention_order=use_new_attention_order,
|
674 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
675 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
676 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
677 |
+
use_checkpoint=use_checkpoint
|
678 |
+
),
|
679 |
+
ResBlock(
|
680 |
+
ch,
|
681 |
+
time_embed_dim,
|
682 |
+
dropout,
|
683 |
+
dims=dims,
|
684 |
+
use_checkpoint=use_checkpoint,
|
685 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
686 |
+
),
|
687 |
+
)
|
688 |
+
self._feature_size += ch
|
689 |
+
|
690 |
+
self.output_blocks = nn.ModuleList([])
|
691 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
692 |
+
for i in range(self.num_res_blocks[level] + 1):
|
693 |
+
ich = input_block_chans.pop()
|
694 |
+
layers = [
|
695 |
+
ResBlock(
|
696 |
+
ch + ich,
|
697 |
+
time_embed_dim,
|
698 |
+
dropout,
|
699 |
+
out_channels=model_channels * mult,
|
700 |
+
dims=dims,
|
701 |
+
use_checkpoint=use_checkpoint,
|
702 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
703 |
+
)
|
704 |
+
]
|
705 |
+
ch = model_channels * mult
|
706 |
+
if ds in attention_resolutions:
|
707 |
+
if num_head_channels == -1:
|
708 |
+
dim_head = ch // num_heads
|
709 |
+
else:
|
710 |
+
num_heads = ch // num_head_channels
|
711 |
+
dim_head = num_head_channels
|
712 |
+
if legacy:
|
713 |
+
#num_heads = 1
|
714 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
715 |
+
if exists(disable_self_attentions):
|
716 |
+
disabled_sa = disable_self_attentions[level]
|
717 |
+
else:
|
718 |
+
disabled_sa = False
|
719 |
+
|
720 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
721 |
+
layers.append(
|
722 |
+
AttentionBlock(
|
723 |
+
ch,
|
724 |
+
use_checkpoint=use_checkpoint,
|
725 |
+
num_heads=num_heads_upsample,
|
726 |
+
num_head_channels=dim_head,
|
727 |
+
use_new_attention_order=use_new_attention_order,
|
728 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
729 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
730 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
731 |
+
use_checkpoint=use_checkpoint
|
732 |
+
)
|
733 |
+
)
|
734 |
+
if level and i == self.num_res_blocks[level]:
|
735 |
+
out_ch = ch
|
736 |
+
layers.append(
|
737 |
+
ResBlock(
|
738 |
+
ch,
|
739 |
+
time_embed_dim,
|
740 |
+
dropout,
|
741 |
+
out_channels=out_ch,
|
742 |
+
dims=dims,
|
743 |
+
use_checkpoint=use_checkpoint,
|
744 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
745 |
+
up=True,
|
746 |
+
)
|
747 |
+
if resblock_updown
|
748 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
749 |
+
)
|
750 |
+
ds //= 2
|
751 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
752 |
+
self._feature_size += ch
|
753 |
+
|
754 |
+
self.out = nn.Sequential(
|
755 |
+
normalization(ch),
|
756 |
+
nn.SiLU(),
|
757 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
758 |
+
)
|
759 |
+
if self.predict_codebook_ids:
|
760 |
+
self.id_predictor = nn.Sequential(
|
761 |
+
normalization(ch),
|
762 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
763 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
764 |
+
)
|
765 |
+
|
766 |
+
def convert_to_fp16(self):
|
767 |
+
"""
|
768 |
+
Convert the torso of the model to float16.
|
769 |
+
"""
|
770 |
+
self.input_blocks.apply(convert_module_to_f16)
|
771 |
+
self.middle_block.apply(convert_module_to_f16)
|
772 |
+
self.output_blocks.apply(convert_module_to_f16)
|
773 |
+
|
774 |
+
def convert_to_fp32(self):
|
775 |
+
"""
|
776 |
+
Convert the torso of the model to float32.
|
777 |
+
"""
|
778 |
+
self.input_blocks.apply(convert_module_to_f32)
|
779 |
+
self.middle_block.apply(convert_module_to_f32)
|
780 |
+
self.output_blocks.apply(convert_module_to_f32)
|
781 |
+
|
782 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
783 |
+
"""
|
784 |
+
Apply the model to an input batch.
|
785 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
786 |
+
:param timesteps: a 1-D batch of timesteps.
|
787 |
+
:param context: conditioning plugged in via crossattn
|
788 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
789 |
+
:return: an [N x C x ...] Tensor of outputs.
|
790 |
+
"""
|
791 |
+
assert (y is not None) == (
|
792 |
+
self.num_classes is not None
|
793 |
+
), "must specify y if and only if the model is class-conditional"
|
794 |
+
hs = []
|
795 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
796 |
+
emb = self.time_embed(t_emb)
|
797 |
+
|
798 |
+
if self.num_classes is not None:
|
799 |
+
assert y.shape[0] == x.shape[0]
|
800 |
+
emb = emb + self.label_emb(y)
|
801 |
+
|
802 |
+
h = x.type(self.dtype)
|
803 |
+
for module in self.input_blocks:
|
804 |
+
h = module(h, emb, context)
|
805 |
+
hs.append(h)
|
806 |
+
h = self.middle_block(h, emb, context)
|
807 |
+
for module in self.output_blocks:
|
808 |
+
h = th.cat([h, hs.pop()], dim=1)
|
809 |
+
h = module(h, emb, context)
|
810 |
+
h = h.type(x.dtype)
|
811 |
+
if self.predict_codebook_ids:
|
812 |
+
return self.id_predictor(h)
|
813 |
+
else:
|
814 |
+
return self.out(h)
|
815 |
+
|
816 |
+
|
817 |
+
|
818 |
+
|
819 |
+
class UNetModel_Temporal(nn.Module):
|
820 |
+
"""
|
821 |
+
The full UNet model with attention and timestep embedding.
|
822 |
+
:param in_channels: channels in the input Tensor.
|
823 |
+
:param model_channels: base channel count for the model.
|
824 |
+
:param out_channels: channels in the output Tensor.
|
825 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
826 |
+
:param attention_resolutions: a collection of downsample rates at which
|
827 |
+
attention will take place. May be a set, list, or tuple.
|
828 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
829 |
+
will be used.
|
830 |
+
:param dropout: the dropout probability.
|
831 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
832 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
833 |
+
downsampling.
|
834 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
835 |
+
:param num_classes: if specified (as an int), then this model will be
|
836 |
+
class-conditional with `num_classes` classes.
|
837 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
838 |
+
:param num_heads: the number of attention heads in each attention layer.
|
839 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
840 |
+
a fixed channel width per attention head.
|
841 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
842 |
+
of heads for upsampling. Deprecated.
|
843 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
844 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
845 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
846 |
+
increased efficiency.
|
847 |
+
"""
|
848 |
+
|
849 |
+
def __init__(
|
850 |
+
self,
|
851 |
+
image_size,
|
852 |
+
in_channels,
|
853 |
+
model_channels,
|
854 |
+
out_channels,
|
855 |
+
num_res_blocks,
|
856 |
+
attention_resolutions,
|
857 |
+
dropout=0,
|
858 |
+
channel_mult=(1, 2, 4, 8),
|
859 |
+
conv_resample=True,
|
860 |
+
dims=2,
|
861 |
+
num_classes=None,
|
862 |
+
use_checkpoint=False,
|
863 |
+
use_fp16=False,
|
864 |
+
num_heads=-1,
|
865 |
+
num_head_channels=-1,
|
866 |
+
num_heads_upsample=-1,
|
867 |
+
use_scale_shift_norm=False,
|
868 |
+
resblock_updown=False,
|
869 |
+
use_new_attention_order=False,
|
870 |
+
use_spatial_transformer=False, # custom transformer support
|
871 |
+
transformer_depth=1, # custom transformer support
|
872 |
+
context_dim=None, # custom transformer support
|
873 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
874 |
+
legacy=True,
|
875 |
+
disable_self_attentions=None,
|
876 |
+
num_attention_blocks=None,
|
877 |
+
disable_middle_self_attn=False,
|
878 |
+
use_linear_in_transformer=False,
|
879 |
+
unet_additional_kwargs=None,
|
880 |
+
):
|
881 |
+
super().__init__()
|
882 |
+
|
883 |
+
## Motion Module Kwagrs
|
884 |
+
self.unet_additional_kwargs = unet_additional_kwargs
|
885 |
+
self.use_motion_module = self.unet_additional_kwargs['use_motion_module']
|
886 |
+
self.motion_module_resolutions = self.unet_additional_kwargs['motion_module_resolutions']
|
887 |
+
self.unet_use_cross_frame_attention = self.unet_additional_kwargs['unet_use_cross_frame_attention']
|
888 |
+
self.unet_use_temporal_attention = self.unet_additional_kwargs['unet_use_temporal_attention']
|
889 |
+
self.motion_module_type = self.unet_additional_kwargs['motion_module_type']
|
890 |
+
|
891 |
+
self.motion_module_kwargs = self.unet_additional_kwargs['motion_module_kwargs']
|
892 |
+
self.num_attention_heads = self.motion_module_kwargs['num_attention_heads']
|
893 |
+
self.num_transformer_block = self.motion_module_kwargs['num_transformer_block']
|
894 |
+
self.attention_block_types = self.motion_module_kwargs['attention_block_types']
|
895 |
+
self.temporal_position_encoding = self.motion_module_kwargs['temporal_position_encoding']
|
896 |
+
self.temporal_position_encoding_max_len = self.motion_module_kwargs['temporal_position_encoding_max_len']
|
897 |
+
self.temporal_attention_dim_div = self.motion_module_kwargs['temporal_attention_dim_div']
|
898 |
+
self.zero_initialize = self.motion_module_kwargs['zero_initialize']
|
899 |
+
|
900 |
+
|
901 |
+
if use_spatial_transformer:
|
902 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
903 |
+
|
904 |
+
if context_dim is not None:
|
905 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
906 |
+
from omegaconf.listconfig import ListConfig
|
907 |
+
if type(context_dim) == ListConfig:
|
908 |
+
context_dim = list(context_dim)
|
909 |
+
|
910 |
+
if num_heads_upsample == -1:
|
911 |
+
num_heads_upsample = num_heads
|
912 |
+
|
913 |
+
if num_heads == -1:
|
914 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
915 |
+
|
916 |
+
if num_head_channels == -1:
|
917 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
918 |
+
|
919 |
+
self.image_size = image_size
|
920 |
+
self.in_channels = in_channels
|
921 |
+
self.model_channels = model_channels
|
922 |
+
self.out_channels = out_channels
|
923 |
+
if isinstance(num_res_blocks, int):
|
924 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks] # 4 * [2]
|
925 |
+
else:
|
926 |
+
if len(num_res_blocks) != len(channel_mult):
|
927 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
928 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
929 |
+
self.num_res_blocks = num_res_blocks
|
930 |
+
if disable_self_attentions is not None:
|
931 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
932 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
933 |
+
if num_attention_blocks is not None:
|
934 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
935 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
936 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
937 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
938 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
939 |
+
f"attention will still not be set.")
|
940 |
+
|
941 |
+
self.attention_resolutions = attention_resolutions
|
942 |
+
self.dropout = dropout
|
943 |
+
self.channel_mult = channel_mult
|
944 |
+
self.conv_resample = conv_resample
|
945 |
+
self.num_classes = num_classes
|
946 |
+
self.use_checkpoint = use_checkpoint
|
947 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
948 |
+
self.num_heads = num_heads
|
949 |
+
self.num_head_channels = num_head_channels
|
950 |
+
self.num_heads_upsample = num_heads_upsample
|
951 |
+
self.predict_codebook_ids = n_embed is not None
|
952 |
+
|
953 |
+
time_embed_dim = model_channels * 4
|
954 |
+
self.time_embed = nn.Sequential(
|
955 |
+
linear(model_channels, time_embed_dim),
|
956 |
+
nn.SiLU(),
|
957 |
+
linear(time_embed_dim, time_embed_dim),
|
958 |
+
)
|
959 |
+
|
960 |
+
if self.num_classes is not None:
|
961 |
+
if isinstance(self.num_classes, int):
|
962 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
963 |
+
elif self.num_classes == "continuous":
|
964 |
+
print("setting up linear c_adm embedding layer")
|
965 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
966 |
+
else:
|
967 |
+
raise ValueError()
|
968 |
+
|
969 |
+
self.input_blocks = nn.ModuleList(
|
970 |
+
[
|
971 |
+
TimestepEmbedSequential(
|
972 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
973 |
+
)
|
974 |
+
]
|
975 |
+
)
|
976 |
+
self.input_blocks_motion_module = nn.ModuleList([])
|
977 |
+
self._feature_size = model_channels
|
978 |
+
input_block_chans = [model_channels]
|
979 |
+
ch = model_channels
|
980 |
+
ds = 1
|
981 |
+
for level, mult in enumerate(channel_mult):
|
982 |
+
for nr in range(self.num_res_blocks[level]):
|
983 |
+
layers = [
|
984 |
+
ResBlock(
|
985 |
+
ch,
|
986 |
+
time_embed_dim,
|
987 |
+
dropout,
|
988 |
+
out_channels=mult * model_channels,
|
989 |
+
dims=dims,
|
990 |
+
use_checkpoint=use_checkpoint,
|
991 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
992 |
+
)
|
993 |
+
]
|
994 |
+
ch = mult * model_channels
|
995 |
+
if ds in attention_resolutions: # [1,2,4]
|
996 |
+
if num_head_channels == -1:
|
997 |
+
dim_head = ch // num_heads
|
998 |
+
else:
|
999 |
+
num_heads = ch // num_head_channels
|
1000 |
+
dim_head = num_head_channels
|
1001 |
+
if legacy:
|
1002 |
+
#num_heads = 1
|
1003 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1004 |
+
if exists(disable_self_attentions):
|
1005 |
+
disabled_sa = disable_self_attentions[level]
|
1006 |
+
else:
|
1007 |
+
disabled_sa = False
|
1008 |
+
|
1009 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
1010 |
+
layers.append(
|
1011 |
+
AttentionBlock(
|
1012 |
+
ch,
|
1013 |
+
use_checkpoint=use_checkpoint,
|
1014 |
+
num_heads=num_heads,
|
1015 |
+
num_head_channels=dim_head,
|
1016 |
+
use_new_attention_order=use_new_attention_order,
|
1017 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
1018 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
1019 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
1020 |
+
use_checkpoint=use_checkpoint
|
1021 |
+
)
|
1022 |
+
)
|
1023 |
+
if self.use_motion_module:
|
1024 |
+
layers_motion_module=[
|
1025 |
+
get_motion_module(
|
1026 |
+
in_channels=ch,
|
1027 |
+
motion_module_type=self.motion_module_type,
|
1028 |
+
motion_module_kwargs=self.motion_module_kwargs,
|
1029 |
+
)]
|
1030 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
1031 |
+
if self.use_motion_module:
|
1032 |
+
self.input_blocks_motion_module.append(TimestepEmbedSequential(*layers_motion_module))
|
1033 |
+
self._feature_size += ch
|
1034 |
+
input_block_chans.append(ch)
|
1035 |
+
if level != len(channel_mult) - 1:
|
1036 |
+
out_ch = ch
|
1037 |
+
self.input_blocks.append(
|
1038 |
+
TimestepEmbedSequential(
|
1039 |
+
ResBlock(
|
1040 |
+
ch,
|
1041 |
+
time_embed_dim,
|
1042 |
+
dropout,
|
1043 |
+
out_channels=out_ch,
|
1044 |
+
dims=dims,
|
1045 |
+
use_checkpoint=use_checkpoint,
|
1046 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1047 |
+
down=True,
|
1048 |
+
)
|
1049 |
+
if resblock_updown
|
1050 |
+
else Downsample(
|
1051 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
1052 |
+
)
|
1053 |
+
)
|
1054 |
+
)
|
1055 |
+
ch = out_ch
|
1056 |
+
input_block_chans.append(ch)
|
1057 |
+
ds *= 2
|
1058 |
+
self._feature_size += ch
|
1059 |
+
# motion module [1,2,4,5,7,8,10,11] !!!! Conv RST RST Down RST RST Down RST RST Down RT RT
|
1060 |
+
if num_head_channels == -1:
|
1061 |
+
dim_head = ch // num_heads
|
1062 |
+
else:
|
1063 |
+
num_heads = ch // num_head_channels
|
1064 |
+
dim_head = num_head_channels
|
1065 |
+
if legacy:
|
1066 |
+
#num_heads = 1
|
1067 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1068 |
+
self.middle_block = TimestepEmbedSequential(
|
1069 |
+
ResBlock(
|
1070 |
+
ch,
|
1071 |
+
time_embed_dim,
|
1072 |
+
dropout,
|
1073 |
+
dims=dims,
|
1074 |
+
use_checkpoint=use_checkpoint,
|
1075 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1076 |
+
),
|
1077 |
+
AttentionBlock(
|
1078 |
+
ch,
|
1079 |
+
use_checkpoint=use_checkpoint,
|
1080 |
+
num_heads=num_heads,
|
1081 |
+
num_head_channels=dim_head,
|
1082 |
+
use_new_attention_order=use_new_attention_order,
|
1083 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
1084 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
1085 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
1086 |
+
use_checkpoint=use_checkpoint
|
1087 |
+
), # Follow by motion module
|
1088 |
+
ResBlock(
|
1089 |
+
ch,
|
1090 |
+
time_embed_dim,
|
1091 |
+
dropout,
|
1092 |
+
dims=dims,
|
1093 |
+
use_checkpoint=use_checkpoint,
|
1094 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1095 |
+
),
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
self._feature_size += ch
|
1099 |
+
|
1100 |
+
self.output_blocks = nn.ModuleList([])
|
1101 |
+
self.output_blocks_motion_module = nn.ModuleList([])
|
1102 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
1103 |
+
for i in range(self.num_res_blocks[level] + 1):
|
1104 |
+
ich = input_block_chans.pop()
|
1105 |
+
layers = [
|
1106 |
+
ResBlock(
|
1107 |
+
ch + ich,
|
1108 |
+
time_embed_dim,
|
1109 |
+
dropout,
|
1110 |
+
out_channels=model_channels * mult,
|
1111 |
+
dims=dims,
|
1112 |
+
use_checkpoint=use_checkpoint,
|
1113 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1114 |
+
)
|
1115 |
+
]
|
1116 |
+
ch = model_channels * mult
|
1117 |
+
if ds in attention_resolutions:
|
1118 |
+
if num_head_channels == -1:
|
1119 |
+
dim_head = ch // num_heads
|
1120 |
+
else:
|
1121 |
+
num_heads = ch // num_head_channels
|
1122 |
+
dim_head = num_head_channels
|
1123 |
+
if legacy:
|
1124 |
+
#num_heads = 1
|
1125 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1126 |
+
if exists(disable_self_attentions):
|
1127 |
+
disabled_sa = disable_self_attentions[level]
|
1128 |
+
else:
|
1129 |
+
disabled_sa = False
|
1130 |
+
|
1131 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
1132 |
+
layers.append(
|
1133 |
+
AttentionBlock(
|
1134 |
+
ch,
|
1135 |
+
use_checkpoint=use_checkpoint,
|
1136 |
+
num_heads=num_heads_upsample,
|
1137 |
+
num_head_channels=dim_head,
|
1138 |
+
use_new_attention_order=use_new_attention_order,
|
1139 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
1140 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
1141 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
1142 |
+
use_checkpoint=use_checkpoint
|
1143 |
+
)
|
1144 |
+
)
|
1145 |
+
if self.use_motion_module:
|
1146 |
+
layers_motion_module=[
|
1147 |
+
get_motion_module(
|
1148 |
+
in_channels=ch,
|
1149 |
+
motion_module_type=self.motion_module_type,
|
1150 |
+
motion_module_kwargs=self.motion_module_kwargs,
|
1151 |
+
)]
|
1152 |
+
if level and i == self.num_res_blocks[level]:
|
1153 |
+
out_ch = ch
|
1154 |
+
layers.append(
|
1155 |
+
ResBlock(
|
1156 |
+
ch,
|
1157 |
+
time_embed_dim,
|
1158 |
+
dropout,
|
1159 |
+
out_channels=out_ch,
|
1160 |
+
dims=dims,
|
1161 |
+
use_checkpoint=use_checkpoint,
|
1162 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1163 |
+
up=True,
|
1164 |
+
)
|
1165 |
+
if resblock_updown
|
1166 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
1167 |
+
)
|
1168 |
+
|
1169 |
+
# if self.use_motion_module:
|
1170 |
+
# in_channel_mm_up = out_ch or ch
|
1171 |
+
# layers_motion_module.append(
|
1172 |
+
# get_motion_module(
|
1173 |
+
# in_channels=in_channel_mm_up,
|
1174 |
+
# motion_module_type=self.motion_module_type,
|
1175 |
+
# motion_module_kwargs=self.motion_module_kwargs,
|
1176 |
+
# )
|
1177 |
+
# )
|
1178 |
+
ds //= 2
|
1179 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
1180 |
+
self.output_blocks_motion_module.append(TimestepEmbedSequential(*layers_motion_module))
|
1181 |
+
self._feature_size += ch
|
1182 |
+
# motion module [0,1,2,4,5,6,8,9,10,12,13,14] RT RT RT Up RST RST RST Up RST RST RST Up RST RST RST
|
1183 |
+
self.out = nn.Sequential(
|
1184 |
+
normalization(ch),
|
1185 |
+
nn.SiLU(),
|
1186 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
1187 |
+
)
|
1188 |
+
if self.predict_codebook_ids:
|
1189 |
+
self.id_predictor = nn.Sequential(
|
1190 |
+
normalization(ch),
|
1191 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
1192 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
def convert_to_fp16(self):
|
1196 |
+
"""
|
1197 |
+
Convert the torso of the model to float16.
|
1198 |
+
"""
|
1199 |
+
self.input_blocks.apply(convert_module_to_f16)
|
1200 |
+
self.middle_block.apply(convert_module_to_f16)
|
1201 |
+
self.output_blocks.apply(convert_module_to_f16)
|
1202 |
+
|
1203 |
+
def convert_to_fp32(self):
|
1204 |
+
"""
|
1205 |
+
Convert the torso of the model to float32.
|
1206 |
+
"""
|
1207 |
+
self.input_blocks.apply(convert_module_to_f32)
|
1208 |
+
self.middle_block.apply(convert_module_to_f32)
|
1209 |
+
self.output_blocks.apply(convert_module_to_f32)
|
1210 |
+
|
1211 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
1212 |
+
pass
|
model_lib/ControlNet/ldm/modules/diffusionmodules/upscaling.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
from model_lib.ControlNet.ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
|
7 |
+
from model_lib.ControlNet.ldm.util import default
|
8 |
+
|
9 |
+
|
10 |
+
class AbstractLowScaleModel(nn.Module):
|
11 |
+
# for concatenating a downsampled image to the latent representation
|
12 |
+
def __init__(self, noise_schedule_config=None):
|
13 |
+
super(AbstractLowScaleModel, self).__init__()
|
14 |
+
if noise_schedule_config is not None:
|
15 |
+
self.register_schedule(**noise_schedule_config)
|
16 |
+
|
17 |
+
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
18 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
19 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
20 |
+
cosine_s=cosine_s)
|
21 |
+
alphas = 1. - betas
|
22 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
23 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
24 |
+
|
25 |
+
timesteps, = betas.shape
|
26 |
+
self.num_timesteps = int(timesteps)
|
27 |
+
self.linear_start = linear_start
|
28 |
+
self.linear_end = linear_end
|
29 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
30 |
+
|
31 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
32 |
+
|
33 |
+
self.register_buffer('betas', to_torch(betas))
|
34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
36 |
+
|
37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
43 |
+
|
44 |
+
def q_sample(self, x_start, t, noise=None):
|
45 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
46 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
47 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return x, None
|
51 |
+
|
52 |
+
def decode(self, x):
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class SimpleImageConcat(AbstractLowScaleModel):
|
57 |
+
# no noise level conditioning
|
58 |
+
def __init__(self):
|
59 |
+
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
|
60 |
+
self.max_noise_level = 0
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
# fix to constant noise level
|
64 |
+
return x, torch.zeros(x.shape[0], device=x.device).long()
|
65 |
+
|
66 |
+
|
67 |
+
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
68 |
+
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
|
69 |
+
super().__init__(noise_schedule_config=noise_schedule_config)
|
70 |
+
self.max_noise_level = max_noise_level
|
71 |
+
|
72 |
+
def forward(self, x, noise_level=None):
|
73 |
+
if noise_level is None:
|
74 |
+
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
75 |
+
else:
|
76 |
+
assert isinstance(noise_level, torch.Tensor)
|
77 |
+
z = self.q_sample(x, noise_level)
|
78 |
+
return z, noise_level
|
79 |
+
|
80 |
+
|
81 |
+
|
model_lib/ControlNet/ldm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat
|
17 |
+
from model_lib.ControlNet.ldm.util import instantiate_from_config
|
18 |
+
import pdb
|
19 |
+
|
20 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
21 |
+
if schedule == "linear":
|
22 |
+
betas = (
|
23 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
24 |
+
)
|
25 |
+
|
26 |
+
elif schedule == "cosine":
|
27 |
+
timesteps = (
|
28 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
29 |
+
)
|
30 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
31 |
+
alphas = torch.cos(alphas).pow(2)
|
32 |
+
alphas = alphas / alphas[0]
|
33 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
34 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
35 |
+
|
36 |
+
elif schedule == "sqrt_linear":
|
37 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
38 |
+
elif schedule == "sqrt":
|
39 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
40 |
+
else:
|
41 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
42 |
+
return betas.numpy()
|
43 |
+
|
44 |
+
|
45 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
46 |
+
if ddim_discr_method == 'uniform':
|
47 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
48 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
49 |
+
elif ddim_discr_method == 'quad':
|
50 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
51 |
+
else:
|
52 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
53 |
+
|
54 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
55 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
56 |
+
steps_out = ddim_timesteps + 1
|
57 |
+
if verbose:
|
58 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
59 |
+
return steps_out
|
60 |
+
|
61 |
+
|
62 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
63 |
+
# select alphas for computing the variance schedule
|
64 |
+
alphas = alphacums[ddim_timesteps]
|
65 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
66 |
+
|
67 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
68 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
69 |
+
if verbose:
|
70 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
71 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
72 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
73 |
+
return sigmas, alphas, alphas_prev
|
74 |
+
|
75 |
+
|
76 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
77 |
+
"""
|
78 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
79 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
80 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
81 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
82 |
+
produces the cumulative product of (1-beta) up to that
|
83 |
+
part of the diffusion process.
|
84 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
85 |
+
prevent singularities.
|
86 |
+
"""
|
87 |
+
betas = []
|
88 |
+
for i in range(num_diffusion_timesteps):
|
89 |
+
t1 = i / num_diffusion_timesteps
|
90 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
91 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
92 |
+
return np.array(betas)
|
93 |
+
|
94 |
+
|
95 |
+
def extract_into_tensor(a, t, x_shape):
|
96 |
+
b, *_ = t.shape
|
97 |
+
out = a.gather(-1, t)
|
98 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
99 |
+
|
100 |
+
|
101 |
+
def checkpoint(func, inputs, params, flag):
|
102 |
+
"""
|
103 |
+
Evaluate a function without caching intermediate activations, allowing for
|
104 |
+
reduced memory at the expense of extra compute in the backward pass.
|
105 |
+
:param func: the function to evaluate.
|
106 |
+
:param inputs: the argument sequence to pass to `func`.
|
107 |
+
:param params: a sequence of parameters `func` depends on but does not
|
108 |
+
explicitly take as arguments.
|
109 |
+
:param flag: if False, disable gradient checkpointing.
|
110 |
+
"""
|
111 |
+
if flag:
|
112 |
+
args = tuple(inputs) + tuple(params)
|
113 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
114 |
+
else:
|
115 |
+
return func(*inputs)
|
116 |
+
|
117 |
+
|
118 |
+
class CheckpointFunction(torch.autograd.Function):
|
119 |
+
@staticmethod
|
120 |
+
def forward(ctx, run_function, length, *args):
|
121 |
+
ctx.run_function = run_function
|
122 |
+
ctx.input_tensors = list(args[:length])
|
123 |
+
ctx.input_params = list(args[length:])
|
124 |
+
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
|
125 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
126 |
+
"cache_enabled": torch.is_autocast_cache_enabled()}
|
127 |
+
with torch.no_grad():
|
128 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
129 |
+
return output_tensors
|
130 |
+
|
131 |
+
@staticmethod
|
132 |
+
def backward(ctx, *output_grads):
|
133 |
+
input_tensors = []
|
134 |
+
input_tensor_index = []
|
135 |
+
for i, input_tensor in enumerate(ctx.input_tensors):
|
136 |
+
if isinstance(input_tensor, torch.Tensor):
|
137 |
+
input_tensors.append(input_tensor.detach().requires_grad_(True))
|
138 |
+
else:
|
139 |
+
input_tensors.append(input_tensor)
|
140 |
+
input_tensor_index.append(i)
|
141 |
+
ctx.input_tensors = input_tensors
|
142 |
+
|
143 |
+
length_input_tensors = len(input_tensors)
|
144 |
+
with torch.enable_grad(), \
|
145 |
+
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
146 |
+
# Fixes a bug where the first op in run_function modifies the
|
147 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
148 |
+
# Tensors.
|
149 |
+
shallow_copies = []
|
150 |
+
for input_tensor in ctx.input_tensors:
|
151 |
+
try:
|
152 |
+
shallow_copies.append(input_tensor.view_as(input_tensor))
|
153 |
+
except:
|
154 |
+
shallow_copies.append(input_tensor)
|
155 |
+
# shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
156 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
157 |
+
# print(len(input_tensors))
|
158 |
+
# pdb.set_trace()
|
159 |
+
num_non_tensor = len(input_tensor_index)
|
160 |
+
for num in range(num_non_tensor):
|
161 |
+
index = input_tensor_index[num_non_tensor-1-num]
|
162 |
+
ctx.input_tensors.pop(index)
|
163 |
+
|
164 |
+
input_params = []
|
165 |
+
input_params_index = []
|
166 |
+
for i, input_param in enumerate(ctx.input_params):
|
167 |
+
if input_param.requires_grad == True:
|
168 |
+
input_params.append(input_param)
|
169 |
+
else:
|
170 |
+
input_params_index.append(i)
|
171 |
+
# pdb.set_trace()
|
172 |
+
input_grads = torch.autograd.grad(output_tensors,ctx.input_tensors + input_params,output_grads,allow_unused=True,)
|
173 |
+
# print(len(input_grads))
|
174 |
+
# pdb.set_trace()
|
175 |
+
input_grads = list(input_grads)
|
176 |
+
for index in input_tensor_index:
|
177 |
+
input_grads.insert(index, None)
|
178 |
+
if input_params_index == []:
|
179 |
+
pass
|
180 |
+
else:
|
181 |
+
for param_index in input_params_index:
|
182 |
+
input_grads.insert(length_input_tensors+param_index, None)
|
183 |
+
input_grads = tuple(input_grads)
|
184 |
+
del ctx.input_tensors
|
185 |
+
del ctx.input_params
|
186 |
+
del output_tensors
|
187 |
+
return (None, None) + input_grads
|
188 |
+
|
189 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
190 |
+
"""
|
191 |
+
Create sinusoidal timestep embeddings.
|
192 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
193 |
+
These may be fractional.
|
194 |
+
:param dim: the dimension of the output.
|
195 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
196 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
197 |
+
"""
|
198 |
+
if not repeat_only:
|
199 |
+
half = dim // 2
|
200 |
+
freqs = torch.exp(
|
201 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
202 |
+
).to(device=timesteps.device)
|
203 |
+
args = timesteps[:, None].float() * freqs[None]
|
204 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
205 |
+
if dim % 2:
|
206 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
207 |
+
else:
|
208 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
209 |
+
return embedding
|
210 |
+
|
211 |
+
|
212 |
+
def zero_module(module):
|
213 |
+
"""
|
214 |
+
Zero out the parameters of a module and return it.
|
215 |
+
"""
|
216 |
+
for p in module.parameters():
|
217 |
+
p.detach().zero_()
|
218 |
+
return module
|
219 |
+
|
220 |
+
|
221 |
+
def scale_module(module, scale):
|
222 |
+
"""
|
223 |
+
Scale the parameters of a module and return it.
|
224 |
+
"""
|
225 |
+
for p in module.parameters():
|
226 |
+
p.detach().mul_(scale)
|
227 |
+
return module
|
228 |
+
|
229 |
+
|
230 |
+
def mean_flat(tensor):
|
231 |
+
"""
|
232 |
+
Take the mean over all non-batch dimensions.
|
233 |
+
"""
|
234 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
235 |
+
|
236 |
+
|
237 |
+
def normalization(channels):
|
238 |
+
"""
|
239 |
+
Make a standard normalization layer.
|
240 |
+
:param channels: number of input channels.
|
241 |
+
:return: an nn.Module for normalization.
|
242 |
+
"""
|
243 |
+
return GroupNorm32(32, channels)
|
244 |
+
|
245 |
+
|
246 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
247 |
+
class SiLU(nn.Module):
|
248 |
+
def forward(self, x):
|
249 |
+
return x * torch.sigmoid(x)
|
250 |
+
|
251 |
+
|
252 |
+
class GroupNorm32(nn.GroupNorm):
|
253 |
+
def forward(self, x):
|
254 |
+
return super().forward(x.float()).type(x.dtype)
|
255 |
+
|
256 |
+
def conv_nd(dims, *args, **kwargs):
|
257 |
+
"""
|
258 |
+
Create a 1D, 2D, or 3D convolution module.
|
259 |
+
"""
|
260 |
+
if dims == 1:
|
261 |
+
return nn.Conv1d(*args, **kwargs)
|
262 |
+
elif dims == 2:
|
263 |
+
return nn.Conv2d(*args, **kwargs)
|
264 |
+
elif dims == 3:
|
265 |
+
return nn.Conv3d(*args, **kwargs)
|
266 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
267 |
+
|
268 |
+
|
269 |
+
def linear(*args, **kwargs):
|
270 |
+
"""
|
271 |
+
Create a linear module.
|
272 |
+
"""
|
273 |
+
return nn.Linear(*args, **kwargs)
|
274 |
+
|
275 |
+
|
276 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
277 |
+
"""
|
278 |
+
Create a 1D, 2D, or 3D average pooling module.
|
279 |
+
"""
|
280 |
+
if dims == 1:
|
281 |
+
return nn.AvgPool1d(*args, **kwargs)
|
282 |
+
elif dims == 2:
|
283 |
+
return nn.AvgPool2d(*args, **kwargs)
|
284 |
+
elif dims == 3:
|
285 |
+
return nn.AvgPool3d(*args, **kwargs)
|
286 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
287 |
+
|
288 |
+
|
289 |
+
class HybridConditioner(nn.Module):
|
290 |
+
|
291 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
292 |
+
super().__init__()
|
293 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
294 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
295 |
+
|
296 |
+
def forward(self, c_concat, c_crossattn):
|
297 |
+
c_concat = self.concat_conditioner(c_concat)
|
298 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
299 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
300 |
+
|
301 |
+
|
302 |
+
def noise_like(shape, device, repeat=False):
|
303 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
304 |
+
noise = lambda: torch.randn(shape, device=device)
|
305 |
+
return repeat_noise() if repeat else noise()
|
model_lib/ControlNet/ldm/modules/distributions/__init__.py
ADDED
File without changes
|
model_lib/ControlNet/ldm/modules/distributions/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (233 Bytes). View file
|
|
model_lib/ControlNet/ldm/modules/distributions/__pycache__/distributions.cpython-39.pyc
ADDED
Binary file (3.85 kB). View file
|
|
model_lib/ControlNet/ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
model_lib/ControlNet/ldm/modules/ema.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1, dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
# remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.', '')
|
20 |
+
self.m_name2s_name.update({name: s_name})
|
21 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def reset_num_updates(self):
|
26 |
+
del self.num_updates
|
27 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
|
28 |
+
|
29 |
+
def forward(self, model):
|
30 |
+
decay = self.decay
|
31 |
+
|
32 |
+
if self.num_updates >= 0:
|
33 |
+
self.num_updates += 1
|
34 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
35 |
+
|
36 |
+
one_minus_decay = 1.0 - decay
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
m_param = dict(model.named_parameters())
|
40 |
+
shadow_params = dict(self.named_buffers())
|
41 |
+
|
42 |
+
for key in m_param:
|
43 |
+
if m_param[key].requires_grad:
|
44 |
+
sname = self.m_name2s_name[key]
|
45 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
46 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
47 |
+
else:
|
48 |
+
assert not key in self.m_name2s_name
|
49 |
+
|
50 |
+
def copy_to(self, model):
|
51 |
+
m_param = dict(model.named_parameters())
|
52 |
+
shadow_params = dict(self.named_buffers())
|
53 |
+
for key in m_param:
|
54 |
+
if m_param[key].requires_grad:
|
55 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
56 |
+
else:
|
57 |
+
assert not key in self.m_name2s_name
|
58 |
+
|
59 |
+
def store(self, parameters):
|
60 |
+
"""
|
61 |
+
Save the current parameters for restoring later.
|
62 |
+
Args:
|
63 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
64 |
+
temporarily stored.
|
65 |
+
"""
|
66 |
+
self.collected_params = [param.clone() for param in parameters]
|
67 |
+
|
68 |
+
def restore(self, parameters):
|
69 |
+
"""
|
70 |
+
Restore the parameters stored with the `store` method.
|
71 |
+
Useful to validate the model with EMA parameters without affecting the
|
72 |
+
original optimization process. Store the parameters before the
|
73 |
+
`copy_to` method. After validation (or model saving), use this to
|
74 |
+
restore the former parameters.
|
75 |
+
Args:
|
76 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
77 |
+
updated with the stored parameters.
|
78 |
+
"""
|
79 |
+
for c_param, param in zip(self.collected_params, parameters):
|
80 |
+
param.data.copy_(c_param.data)
|
model_lib/ControlNet/ldm/modules/encoders/__init__.py
ADDED
File without changes
|
model_lib/ControlNet/ldm/modules/encoders/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (228 Bytes). View file
|
|