File size: 9,446 Bytes
0b03171 a28041c 0b03171 a28041c 0b03171 a28041c 0b03171 a28041c 0b03171 a28041c 0b03171 a28041c 0b03171 e2894da 0b03171 a28041c 0b03171 a28041c 0b03171 a28041c 0b03171 a28041c 0b03171 a28041c 0b03171 9379375 0b03171 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
import json
import librosa
import os
import soundfile as sf
import tempfile
import uuid
import torch
from nemo.collections.asr.models import ASRModel
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED
SAMPLE_RATE = 16000 # Hz
MAX_AUDIO_MINUTES = 10 # wont try to transcribe if longer than this
model = ASRModel.from_pretrained("nvidia/canary-1b")
model.eval()
# make sure beam size always 1 for consistency
model.change_decoding_strategy(None)
decoding_cfg = model.cfg.decoding
decoding_cfg.beam.beam_size = 1
model.change_decoding_strategy(decoding_cfg)
# setup for buffered inference
model.cfg.preprocessor.dither = 0.0
model.cfg.preprocessor.pad_to = 0
feature_stride = model.cfg.preprocessor['window_stride']
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
frame_asr = FrameBatchMultiTaskAED(
asr_model=model,
frame_len=40.0,
total_buffer=40.0,
batch_size=16,
)
amp_dtype = torch.float16
def convert_audio(audio_filepath, tmpdir, utt_id):
"""
Convert all files to monochannel 16 kHz wav files.
Do not convert and raise error if audio too long.
Returns output filename and duration.
"""
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
duration = librosa.get_duration(y=data, sr=sr)
if duration / 60.0 > MAX_AUDIO_MINUTES:
raise gr.Error(
f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. "
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
"(click on the scissors icon to start trimming audio)."
)
if sr != SAMPLE_RATE:
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
out_filename = os.path.join(tmpdir, utt_id + '.wav')
# save output audio
sf.write(out_filename, data, SAMPLE_RATE)
return out_filename, duration
def transcribe(audio_filepath, src_lang, tgt_lang, pnc):
if audio_filepath is None:
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
utt_id = uuid.uuid4()
with tempfile.TemporaryDirectory() as tmpdir:
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
# map src_lang and tgt_lang from long versions to short
LANG_LONG_TO_LANG_SHORT = {
"English": "en",
"Spanish": "es",
"French": "fr",
"German": "de",
}
if src_lang not in LANG_LONG_TO_LANG_SHORT.keys():
raise ValueError(f"src_lang must be one of {LANG_LONG_TO_LANG_SHORT.keys()}")
else:
src_lang = LANG_LONG_TO_LANG_SHORT[src_lang]
if tgt_lang not in LANG_LONG_TO_LANG_SHORT.keys():
raise ValueError(f"tgt_lang must be one of {LANG_LONG_TO_LANG_SHORT.keys()}")
else:
tgt_lang = LANG_LONG_TO_LANG_SHORT[tgt_lang]
# infer taskname from src_lang and tgt_lang
if src_lang == tgt_lang:
taskname = "asr"
else:
taskname = "s2t_translation"
# update pnc variable to be "yes" or "no"
pnc = "yes" if pnc else "no"
# make manifest file and save
manifest_data = {
"audio_filepath": converted_audio_filepath,
"source_lang": src_lang,
"target_lang": tgt_lang,
"taskname": taskname,
"pnc": pnc,
"answer": "predict",
"duration": str(duration),
}
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
with open(manifest_filepath, 'w') as fout:
line = json.dumps(manifest_data)
fout.write(line + '\n')
# call transcribe, passing in manifest filepath
if duration < 40:
output_text = model.transcribe(manifest_filepath)[0]
else: # do buffered inference
with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda
with torch.no_grad():
hyps = get_buffered_pred_feat_multitaskAED(
frame_asr,
model.cfg.preprocessor,
model_stride_in_secs,
model.device,
manifest=manifest_filepath,
filepaths=None,
)
output_text = hyps[0].text
return output_text
# add logic to make sure dropdown menus only suggest valid combos
def on_src_or_tgt_lang_change(src_lang_value, tgt_lang_value, pnc_value):
"""Callback function for when src_lang or tgt_lang dropdown menus are changed.
Args:
src_lang_value(string), tgt_lang_value (string), pnc_value(bool) - the current
chosen "values" of each Gradio component
Returns:
src_lang, tgt_lang, pnc - these are the new Gradio components that will be displayed
Note: I found the required logic is easier to understand if you think about the possible src & tgt langs as
a matrix, e.g. with English, Spanish, French, German as the langs, and only transcription in the same language,
and X -> English and English -> X translation being allowed, the matrix looks like the diagram below ("Y" means it is
allowed to go into that state).
It is easier to understand the code if you think about which state you are in, given the current src_lang_value and
tgt_lang_value, and then which states you can go to from there.
tgt lang
- |EN |ES |FR |DE
------------------
EN| Y | Y | Y | Y
------------------
src ES| Y | Y | |
lang ------------------
FR| Y | | Y |
------------------
DE| Y | | | Y
"""
if src_lang_value == "English" and tgt_lang_value == "English":
# src_lang and tgt_lang can go anywhere
src_lang = gr.Dropdown(
choices=["English", "Spanish", "French", "German"],
value=src_lang_value,
label="Input audio is spoken in:"
)
tgt_lang = gr.Dropdown(
choices=["English", "Spanish", "French", "German"],
value=tgt_lang_value,
label="Transcribe in language:"
)
elif src_lang_value == "English":
# src is English & tgt is non-English
# => src can only be English or current tgt_lang_values
# & tgt can be anything
src_lang = gr.Dropdown(
choices=["English", tgt_lang_value],
value=src_lang_value,
label="Input audio is spoken in:"
)
tgt_lang = gr.Dropdown(
choices=["English", "Spanish", "French", "German"],
value=tgt_lang_value,
label="Transcribe in language:"
)
elif tgt_lang_value == "English":
# src is non-English & tgt is English
# => src can be anything
# & tgt can only be English or current src_lang_value
src_lang = gr.Dropdown(
choices=["English", "Spanish", "French", "German"],
value=src_lang_value,
label="Input audio is spoken in:"
)
tgt_lang = gr.Dropdown(
choices=["English", src_lang_value],
value=tgt_lang_value,
label="Transcribe in language:"
)
else:
# both src and tgt are non-English
# => both src and tgt can only be switch to English or themselves
src_lang = gr.Dropdown(
choices=["English", src_lang_value],
value=src_lang_value,
label="Input audio is spoken in:"
)
tgt_lang = gr.Dropdown(
choices=["English", tgt_lang_value],
value=tgt_lang_value,
label="Transcribe in language:"
)
# let pnc be anything if src_lang_value == tgt_lang_value, else fix to True
if src_lang_value == tgt_lang_value:
pnc = gr.Checkbox(
value=pnc_value,
label="Punctuation & Capitalization in transcript?",
interactive=True
)
else:
pnc = gr.Checkbox(
value=True,
label="Punctuation & Capitalization in transcript?",
interactive=False
)
return src_lang, tgt_lang, pnc
with gr.Blocks(
title="NeMo Canary Model",
css="""
textarea { font-size: 18px;}
#model_output_text_box span {
font-size: 18px;
font-weight: bold;
}
""",
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
) as demo:
gr.HTML("<h1 style='text-align: center'>NeMo Canary model: Transcribe & Translate audio</h1>")
with gr.Row():
with gr.Column():
gr.HTML("<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>")
audio_file = gr.Audio(sources=["microphone", "upload"], type="filepath")
gr.HTML("<p><b>Step 2:</b> Choose the input and output language.</p>")
src_lang = gr.Dropdown(
choices=["English", "Spanish", "French", "German"],
value="English",
label="Input audio is spoken in:"
)
with gr.Column():
tgt_lang = gr.Dropdown(
choices=["English", "Spanish", "French", "German"],
value="English",
label="Transcribe in language:"
)
pnc = gr.Checkbox(
value=True,
label="Punctuation & Capitalization in transcript?",
)
with gr.Column():
gr.HTML("<p><b>Step 3:</b> Run the model.</p>")
go_button = gr.Button(
value="Run model",
variant="primary", # make "primary" so it stands out (default is "secondary")
)
model_output_text_box = gr.Textbox(
label="Model Output",
elem_id="model_output_text_box",
)
with gr.Row():
gr.HTML(
"<p style='text-align: center'>"
"🐤 <a href='https://huggingface.co/nvidia/canary-1b' target='_blank'>Canary model</a> | "
"🧑💻 <a href='https://github.com/NVIDIA/NeMo' target='_blank'>NeMo Repository</a>"
"</p>"
)
go_button.click(
fn=transcribe,
inputs = [audio_file, src_lang, tgt_lang, pnc],
outputs = [model_output_text_box]
)
# call on_src_or_tgt_lang_change whenever src_lang or tgt_lang dropdown menus are changed
src_lang.change(
fn=on_src_or_tgt_lang_change,
inputs=[src_lang, tgt_lang, pnc],
outputs=[src_lang, tgt_lang, pnc],
)
tgt_lang.change(
fn=on_src_or_tgt_lang_change,
inputs=[src_lang, tgt_lang, pnc],
outputs=[src_lang, tgt_lang, pnc],
)
demo.queue()
demo.launch() |