File size: 11,093 Bytes
d807efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import argparse
import os
import copy
import shutil
import numpy as np
import json
import torch
from PIL import Image, ImageDraw, ImageFont
# Grounding DINO
import sys
sys.path.append("/path/to/Grounded-Segment-Anything")
# change to your "Grounded-Segment-Anything" installation folder!!!!!
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import (
sam_model_registry,
sam_hq_model_registry,
SamPredictor
)
import cv2
import numpy as np
import matplotlib.pyplot as plt
def load_image_to_resize(image_path, left=0, right=0, top=0, bottom=0, size = 512):
if type(image_path) is str:
image = np.array(Image.open(image_path))[:, :, :3]
else:
image = image_path
h, w, c = image.shape
left = min(left, w-1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h-bottom, left:w-right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((size, size)))
return image
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
def save_mask_data(output_dir, mask_list, box_list, label_list):
value = 0 # 0 for background
mask_img = torch.zeros(mask_list.shape[-2:])
for idx, mask in enumerate(mask_list):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
plt.figure(figsize=(10, 10))
plt.imshow(mask_img.numpy())
plt.axis('off')
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
json_data = [{
'value': value,
'label': 'background'
}]
for label, box in zip(label_list, box_list):
value += 1
name, logit = label.split('(')
logit = logit[:-1] # the last is ')'
json_data.append({
'value': value,
'label': name,
'logit': float(logit),
'box': box.numpy().tolist(),
})
with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
json.dump(json_data, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
parser.add_argument("--sam_version", type=str, default="vit_h", required=False, help="SAM ViT version: vit_b / vit_l / vit_h")
parser.add_argument("--sam_checkpoint", type=str, required=False, help="path to sam checkpoint file")
parser.add_argument("--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file")
parser.add_argument("--use_sam_hq", action="store_true", help="using sam-hq for prediction")
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
parser.add_argument("--name", type=str, default="", help="name of the input image folder")
parser.add_argument("--size", type=int, default=1024, help="image size")
args = parser.parse_args()
args.base_folder = "/path/to/Grounded-Segment-Anything"
# change to your "Grounded-Segment-Anything" installation folder!!!!!
input_folder = os.path.join(".", args.name)
args.config = os.path.join(args.base_folder,"GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py")
args.grounded_checkpoint = "groundingdino_swint_ogc.pth"
args.sam_checkpoint="sam_vit_h_4b8939.pth"
args.box_threshold = 0.3
args.text_threshold = 0.25
args.device = "cuda"
# cfg
config_file = args.config # change the path of the model config file
grounded_checkpoint = os.path.join(args.base_folder,args.grounded_checkpoint) # change the path of the model
sam_version = args.sam_version
sam_checkpoint = os.path.join(args.base_folder,args.sam_checkpoint)
if args.sam_hq_checkpoint is not None:
sam_hq_checkpoint = os.path.join(args.base_folder,args.sam_hq_checkpoint)
use_sam_hq = args.use_sam_hq
# image_path = args.input_image
text_prompt = args.text_prompt
# output_dir = args.output_dir
box_threshold = args.box_threshold
text_threshold = args.text_threshold
device = args.device
output_dir = input_folder
os.makedirs(output_dir, exist_ok=True)
# unify names
if len(os.listdir(input_folder)) == 1:
for filename in os.listdir(input_folder):
imgtype = "." + filename.split(".")[-1]
shutil.move(os.path.join(input_folder, filename), os.path.join(input_folder, "img"+imgtype))
### resizing and save
if os.path.exists(os.path.join(input_folder, "img.jpg")):
image_path = os.path.join(input_folder, "img.jpg")
else:
image_path = os.path.join(input_folder, "img.png")
image = load_image_to_resize(image_path, size = args.size)
image =Image.fromarray(image)
resized_image_path = os.path.join(input_folder, "img_{}.png".format(args.size))
image.save(resized_image_path)
image_path = resized_image_path
# load image
image_pil, image = load_image(image_path)
# load model
model = load_model(config_file, grounded_checkpoint, device=device)
# # visualize raw image
# image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
# run grounding dino model
boxes_filt, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, device=device
)
# initialize SAM
if use_sam_hq:
predictor = SamPredictor(sam_hq_model_registry[sam_version](checkpoint=sam_hq_checkpoint).to(device))
else:
predictor = SamPredictor(sam_model_registry[sam_version](checkpoint=sam_checkpoint).to(device))
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
masks, _, _ = predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes.to(device),
multimask_output = False,
)
tot_detect = len(masks)
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(image)
for idx, (mask,label) in enumerate(zip(masks,pred_phrases)):
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
np.save( os.path.join(output_dir, "maskSAM{}_{}.npy".format(idx, label)) ,mask[0].cpu().numpy())
for idx, (box, label) in enumerate(zip(boxes_filt, pred_phrases)):
label = label + "_{}".format(idx)
show_box(box.numpy(), plt.gca(), label)
rec_mask = np.zeros_like(mask[0].cpu().numpy()).astype(np.bool_)
for idx, box in enumerate(boxes_filt):
up = box[0].numpy().astype(np.int32)
down = box[2].numpy().astype(np.int32)
left = box[1].numpy().astype(np.int32)
right = box[3].numpy().astype(np.int32)
rec_mask[left:right, up:down] = True
plt.axis('off')
plt.savefig(
os.path.join(output_dir, "seg_init_SAM.png"),
bbox_inches="tight", dpi=300, pad_inches=0.0
)
mask_detected = np.logical_or.reduce([mask[0].cpu().numpy() for mask in masks ])
mask_undetected = np.logical_not(mask_detected)
np.save( os.path.join(output_dir, "SAM_detected.npy") ,mask_detected)
np.save( os.path.join(output_dir, "maskSAM{}_rest.npy".format(len(masks))) ,mask_undetected)
plt.imsave( os.path.join(output_dir,"mask_SAM-detected.png"), np.repeat(np.expand_dims( mask_detected.astype(float), axis=2), 3, axis = 2))
|