|
import torch |
|
from utils import import_model_class_from_model_name_or_path |
|
from transformers import AutoTokenizer |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
DDIMScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from accelerate import Accelerator |
|
from tqdm.auto import tqdm |
|
from utils import sd_prepare_input_decom, save_images |
|
import torch.nn.functional as F |
|
import itertools |
|
from peft import LoraConfig |
|
from controller import GroupedCAController, register_attention_disentangled_control, DummyController |
|
from utils import image2latent, latent2image |
|
import matplotlib.pyplot as plt |
|
from utils_mask import check_mask_overlap_torch |
|
|
|
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') |
|
|
|
class DEditSDPipeline: |
|
def __init__( |
|
self, |
|
mask_list, |
|
mask_label_list, |
|
mask_list_2 = None, |
|
mask_label_list_2 = None, |
|
resolution = 512, |
|
num_tokens = 1 |
|
): |
|
super().__init__() |
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
self.model_id = model_id |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", use_fast=False) |
|
text_encoder_cls_one = import_model_class_from_model_name_or_path(model_id, subfolder = "text_encoder") |
|
self.text_encoder = text_encoder_cls_one.from_pretrained(model_id, subfolder="text_encoder" ).to(device) |
|
|
|
self.unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet") |
|
self.unet.ca_dim = 768 |
|
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae") |
|
self.scheduler = DDPMScheduler.from_pretrained(model_id , subfolder="scheduler") |
|
self.scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=True, |
|
rescale_betas_zero_snr = False, |
|
) |
|
self.mixed_precision = "fp16" |
|
self.resolution = resolution |
|
self.num_tokens = num_tokens |
|
|
|
self.mask_list = mask_list |
|
self.mask_label_list = mask_label_list |
|
notation_token_list = [phrase.split(" ")[-1] for phrase in mask_label_list] |
|
placeholder_token_list = ["#"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list)] |
|
self.set_string_list, placeholder_token_ids = self.add_tokens(placeholder_token_list) |
|
self.min_added_id = min(placeholder_token_ids) |
|
self.max_added_id = max(placeholder_token_ids) |
|
|
|
if mask_list_2 is not None: |
|
self.mask_list_2 = mask_list_2 |
|
self.mask_label_list_2 = mask_label_list_2 |
|
notation_token_list_2 = [phrase.split(" ")[-1] for phrase in mask_label_list_2] |
|
|
|
placeholder_token_list_2 = ["$"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list_2)] |
|
self.set_string_list_2, placeholder_token_ids_2 = self.add_tokens(placeholder_token_list_2) |
|
self.max_added_id = max(placeholder_token_ids_2) |
|
|
|
def add_tokens_text_encoder_random_init(self, placeholder_token, num_tokens=1): |
|
|
|
placeholder_tokens = [placeholder_token] |
|
|
|
additional_tokens = [] |
|
for i in range(1, num_tokens): |
|
additional_tokens.append(f"{placeholder_token}_{i}") |
|
placeholder_tokens += additional_tokens |
|
num_added_tokens = self.tokenizer.add_tokens(placeholder_tokens) |
|
|
|
if num_added_tokens != num_tokens: |
|
raise ValueError( |
|
f"The tokenizer already contains the token {placeholder_token}. Please pass a different" |
|
" `placeholder_token` that is not already in the tokenizer." |
|
) |
|
placeholder_token_ids = self.tokenizer.convert_tokens_to_ids(placeholder_tokens) |
|
|
|
self.text_encoder.resize_token_embeddings(len(self.tokenizer)) |
|
token_embeds = self.text_encoder.get_input_embeddings().weight.data |
|
std, mean = torch.std_mean(token_embeds) |
|
with torch.no_grad(): |
|
for token_id in placeholder_token_ids: |
|
token_embeds[token_id] = torch.randn_like(token_embeds[token_id])*std + mean |
|
|
|
set_string = " ".join(self.tokenizer.convert_ids_to_tokens(placeholder_token_ids)) |
|
|
|
return set_string, placeholder_token_ids |
|
|
|
def add_tokens(self, placeholder_token_list): |
|
set_string_list = [] |
|
placeholder_token_ids_list = [] |
|
for str_idx in range(len(placeholder_token_list)): |
|
placeholder_token = placeholder_token_list[str_idx] |
|
set_string, placeholder_token_ids = self.add_tokens_text_encoder_random_init(placeholder_token, num_tokens=self.num_tokens) |
|
set_string_list.append(set_string) |
|
placeholder_token_ids_list.append(placeholder_token_ids) |
|
placeholder_token_ids = list(itertools.chain(*placeholder_token_ids_list)) |
|
return set_string_list, placeholder_token_ids |
|
|
|
def train_emb( |
|
self, |
|
image_gt, |
|
set_string_list, |
|
gradient_accumulation_steps = 5, |
|
embedding_learning_rate = 1e-4, |
|
max_emb_train_steps = 100, |
|
train_batch_size = 1, |
|
): |
|
decom_controller = GroupedCAController(mask_list = self.mask_list) |
|
register_attention_disentangled_control(self.unet, decom_controller) |
|
|
|
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps) |
|
self.vae.requires_grad_(False) |
|
self.unet.requires_grad_(False) |
|
|
|
self.text_encoder.requires_grad_(True) |
|
|
|
self.text_encoder.text_model.encoder.requires_grad_(False) |
|
self.text_encoder.text_model.final_layer_norm.requires_grad_(False) |
|
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) |
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
self.unet.to(device, dtype=weight_dtype) |
|
self.vae.to(device, dtype=weight_dtype) |
|
|
|
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()] |
|
optimizer = torch.optim.AdamW(trainable_embmat_list_1, lr=embedding_learning_rate) |
|
|
|
self.text_encoder, optimizer = accelerator.prepare(self.text_encoder, optimizer) |
|
|
|
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight.data.clone() |
|
|
|
self.text_encoder.train() |
|
|
|
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps |
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("DEdit EmbSteps", config={ |
|
"embedding_learning_rate": embedding_learning_rate, |
|
"text_embedding_optimization_steps": effective_emb_train_steps, |
|
}) |
|
global_step = 0 |
|
noise_scheduler = self.scheduler |
|
progress_bar = tqdm(range(0, effective_emb_train_steps), initial = global_step, desc="EmbSteps") |
|
latents0 = image2latent(image_gt, vae = self.vae, dtype = weight_dtype) |
|
latents0 = latents0.repeat(train_batch_size, 1, 1, 1) |
|
|
|
for _ in range(max_emb_train_steps): |
|
with accelerator.accumulate(self.text_encoder): |
|
latents = latents0.clone().detach() |
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
encoder_hidden_states_list = sd_prepare_input_decom( |
|
set_string_list, |
|
self.tokenizer, |
|
self.text_encoder, |
|
length = 40, |
|
bsz = train_batch_size, |
|
weight_dtype = weight_dtype |
|
) |
|
|
|
model_pred = self.unet( |
|
noisy_latents, |
|
timesteps, |
|
encoder_hidden_states = encoder_hidden_states_list, |
|
).sample |
|
|
|
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean") |
|
accelerator.backward(loss) |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool) |
|
index_no_updates[self.min_added_id : self.max_added_id + 1] = False |
|
with torch.no_grad(): |
|
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[ |
|
index_no_updates] = orig_embeds_params_1[index_no_updates] |
|
|
|
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if global_step >= max_emb_train_steps: |
|
break |
|
|
|
accelerator.wait_for_everyone() |
|
accelerator.end_training() |
|
self.text_encoder = accelerator.unwrap_model(self.text_encoder).to(dtype = weight_dtype) |
|
|
|
def train_model( |
|
self, |
|
image_gt, |
|
set_string_list, |
|
gradient_accumulation_steps = 5, |
|
max_diffusion_train_steps = 100, |
|
diffusion_model_learning_rate = 1e-5, |
|
train_batch_size = 1, |
|
train_full_lora = False, |
|
lora_rank = 4, |
|
lora_alpha = 4 |
|
): |
|
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device) |
|
self.unet.ca_dim = 768 |
|
decom_controller = GroupedCAController(mask_list = self.mask_list) |
|
register_attention_disentangled_control(self.unet, decom_controller) |
|
|
|
mixed_precision = "fp16" |
|
accelerator = Accelerator(gradient_accumulation_steps = gradient_accumulation_steps, mixed_precision = mixed_precision) |
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
self.vae.requires_grad_(False) |
|
self.vae.to(device, dtype=weight_dtype) |
|
|
|
self.unet.requires_grad_(False) |
|
self.unet.train() |
|
|
|
self.text_encoder.requires_grad_(False) |
|
|
|
if not train_full_lora: |
|
trainable_params_list = [] |
|
for _, module in self.unet.named_modules(): |
|
module_name = type(module).__name__ |
|
if module_name == "Attention": |
|
if module.to_k.in_features == self.unet.ca_dim: |
|
module.to_k.weight.requires_grad = True |
|
trainable_params_list.append(module.to_k.weight) |
|
if module.to_k.bias is not None: |
|
module.to_k.bias.requires_grad = True |
|
trainable_params_list.append(module.to_k.bias) |
|
module.to_v.weight.requires_grad = True |
|
trainable_params_list.append(module.to_v.weight) |
|
if module.to_v.bias is not None: |
|
module.to_v.bias.requires_grad = True |
|
trainable_params_list.append(module.to_v.bias) |
|
module.to_q.weight.requires_grad = True |
|
trainable_params_list.append(module.to_q.weight) |
|
if module.to_q.bias is not None: |
|
module.to_q.bias.requires_grad = True |
|
trainable_params_list.append(module.to_q.bias) |
|
else: |
|
unet_lora_config = LoraConfig( |
|
r=lora_rank, |
|
lora_alpha=lora_alpha, |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"], |
|
) |
|
self.unet.add_adapter(unet_lora_config) |
|
print("training full parameters using lora!") |
|
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters())) |
|
|
|
self.text_encoder.to(device, dtype=weight_dtype) |
|
|
|
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate) |
|
self.unet, optimizer = accelerator.prepare(self.unet, optimizer) |
|
psum2 = sum(p.numel() for p in trainable_params_list) |
|
|
|
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps |
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("textual_inversion", config={ |
|
"diffusion_model_learning_rate": diffusion_model_learning_rate, |
|
"diffusion_model_optimization_steps": effective_diffusion_train_steps, |
|
}) |
|
|
|
global_step = 0 |
|
progress_bar = tqdm( range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps") |
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0" , subfolder="scheduler") |
|
|
|
latents0 = image2latent(image_gt, vae = self.vae, dtype=weight_dtype) |
|
latents0 = latents0.repeat(train_batch_size, 1, 1, 1) |
|
|
|
with torch.no_grad(): |
|
encoder_hidden_states_list = sd_prepare_input_decom( |
|
set_string_list, |
|
self.tokenizer, |
|
self.text_encoder, |
|
length = 40, |
|
bsz = train_batch_size, |
|
weight_dtype = weight_dtype |
|
) |
|
|
|
for _ in range(max_diffusion_train_steps): |
|
with accelerator.accumulate(self.unet): |
|
latents = latents0.clone().detach() |
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
model_pred = self.unet( |
|
noisy_latents, |
|
timesteps, |
|
encoder_hidden_states=encoder_hidden_states_list, |
|
).sample |
|
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean") |
|
accelerator.backward(loss) |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
if global_step >=max_diffusion_train_steps: |
|
break |
|
accelerator.wait_for_everyone() |
|
accelerator.end_training() |
|
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype) |
|
|
|
def train_emb_2imgs( |
|
self, |
|
image_gt_1, |
|
image_gt_2, |
|
set_string_list_1, |
|
set_string_list_2, |
|
gradient_accumulation_steps = 5, |
|
embedding_learning_rate = 1e-4, |
|
max_emb_train_steps = 100, |
|
train_batch_size = 1, |
|
): |
|
decom_controller_1 = GroupedCAController(mask_list = self.mask_list) |
|
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2) |
|
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps) |
|
self.vae.requires_grad_(False) |
|
self.unet.requires_grad_(False) |
|
|
|
self.text_encoder.requires_grad_(True) |
|
|
|
self.text_encoder.text_model.encoder.requires_grad_(False) |
|
self.text_encoder.text_model.final_layer_norm.requires_grad_(False) |
|
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) |
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
self.unet.to(device, dtype=weight_dtype) |
|
self.vae.to(device, dtype=weight_dtype) |
|
|
|
|
|
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()] |
|
|
|
optimizer = torch.optim.AdamW(trainable_embmat_list_1, lr=embedding_learning_rate) |
|
self.text_encoder, optimizer= accelerator.prepare(self.text_encoder, optimizer) |
|
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder) .get_input_embeddings().weight.data.clone() |
|
|
|
self.text_encoder.train() |
|
|
|
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps |
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("EmbFt", config={ |
|
"embedding_learning_rate": embedding_learning_rate, |
|
"text_embedding_optimization_steps": effective_emb_train_steps, |
|
}) |
|
|
|
global_step = 0 |
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id , subfolder="scheduler") |
|
progress_bar = tqdm(range(0, effective_emb_train_steps),initial=global_step,desc="EmbSteps") |
|
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype) |
|
latents0_1 = latents0_1.repeat(train_batch_size,1,1,1) |
|
|
|
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype) |
|
latents0_2 = latents0_2.repeat(train_batch_size,1,1,1) |
|
|
|
for step in range(max_emb_train_steps): |
|
with accelerator.accumulate(self.text_encoder): |
|
latents_1 = latents0_1.clone().detach() |
|
noise_1 = torch.randn_like(latents_1) |
|
|
|
latents_2 = latents0_2.clone().detach() |
|
noise_2 = torch.randn_like(latents_2) |
|
|
|
bsz = latents_1.shape[0] |
|
|
|
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device) |
|
timesteps_1 = timesteps_1.long() |
|
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1) |
|
|
|
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device) |
|
timesteps_2 = timesteps_2.long() |
|
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2) |
|
|
|
register_attention_disentangled_control(self.unet, decom_controller_1) |
|
encoder_hidden_states_list_1 = sd_prepare_input_decom( |
|
set_string_list_1, |
|
self.tokenizer, |
|
self.text_encoder, |
|
length = 40, |
|
bsz = train_batch_size, |
|
weight_dtype = weight_dtype |
|
) |
|
|
|
model_pred_1 = self.unet( |
|
noisy_latents_1, |
|
timesteps_1, |
|
encoder_hidden_states=encoder_hidden_states_list_1, |
|
).sample |
|
|
|
register_attention_disentangled_control(self.unet, decom_controller_2) |
|
|
|
encoder_hidden_states_list_2= sd_prepare_input_decom( |
|
set_string_list_2, |
|
self.tokenizer, |
|
self.text_encoder, |
|
length = 40, |
|
bsz = train_batch_size, |
|
weight_dtype = weight_dtype |
|
) |
|
|
|
model_pred_2 = self.unet( |
|
noisy_latents_2, |
|
timesteps_2, |
|
encoder_hidden_states = encoder_hidden_states_list_2, |
|
).sample |
|
|
|
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean") /2 |
|
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean") /2 |
|
loss = loss_1 + loss_2 |
|
accelerator.backward(loss) |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool) |
|
index_no_updates[self.min_added_id : self.max_added_id + 1] = False |
|
with torch.no_grad(): |
|
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[ |
|
index_no_updates] = orig_embeds_params_1[index_no_updates] |
|
|
|
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if global_step >= max_emb_train_steps: |
|
break |
|
accelerator.wait_for_everyone() |
|
accelerator.end_training() |
|
self.text_encoder = accelerator.unwrap_model(self.text_encoder) .to(dtype = weight_dtype) |
|
|
|
def train_model_2imgs( |
|
self, |
|
image_gt_1, |
|
image_gt_2, |
|
set_string_list_1, |
|
set_string_list_2, |
|
gradient_accumulation_steps = 5, |
|
max_diffusion_train_steps = 100, |
|
diffusion_model_learning_rate = 1e-5, |
|
train_batch_size = 1, |
|
train_full_lora = False, |
|
lora_rank = 4, |
|
lora_alpha = 4 |
|
): |
|
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device) |
|
self.unet.ca_dim = 768 |
|
decom_controller_1 = GroupedCAController(mask_list = self.mask_list) |
|
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2) |
|
|
|
mixed_precision = "fp16" |
|
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps,mixed_precision=mixed_precision) |
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
self.vae.requires_grad_(False) |
|
self.vae.to(device, dtype=weight_dtype) |
|
self.unet.requires_grad_(False) |
|
self.unet.train() |
|
|
|
self.text_encoder.requires_grad_(False) |
|
|
|
if not train_full_lora: |
|
trainable_params_list = [] |
|
for name, module in self.unet.named_modules(): |
|
module_name = type(module).__name__ |
|
if module_name == "Attention": |
|
if module.to_k.in_features == self.unet.ca_dim: |
|
module.to_k.weight.requires_grad = True |
|
trainable_params_list.append(module.to_k.weight) |
|
if module.to_k.bias is not None: |
|
module.to_k.bias.requires_grad = True |
|
trainable_params_list.append(module.to_k.bias) |
|
|
|
module.to_v.weight.requires_grad = True |
|
trainable_params_list.append(module.to_v.weight) |
|
if module.to_v.bias is not None: |
|
module.to_v.bias.requires_grad = True |
|
trainable_params_list.append(module.to_v.bias) |
|
module.to_q.weight.requires_grad = True |
|
trainable_params_list.append(module.to_q.weight) |
|
if module.to_q.bias is not None: |
|
module.to_q.bias.requires_grad = True |
|
trainable_params_list.append(module.to_q.bias) |
|
else: |
|
unet_lora_config = LoraConfig( |
|
r = lora_rank, |
|
lora_alpha = lora_alpha, |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"], |
|
) |
|
self.unet.add_adapter(unet_lora_config) |
|
print("training full parameters using lora!") |
|
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters())) |
|
|
|
self.text_encoder.to(device, dtype=weight_dtype) |
|
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate) |
|
self.unet, optimizer = accelerator.prepare(self.unet, optimizer) |
|
psum2 = sum(p.numel() for p in trainable_params_list) |
|
|
|
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps |
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("ModelFt", config={ |
|
"diffusion_model_learning_rate": diffusion_model_learning_rate, |
|
"diffusion_model_optimization_steps": effective_diffusion_train_steps, |
|
}) |
|
|
|
global_step = 0 |
|
progress_bar = tqdm(range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps") |
|
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id, subfolder="scheduler") |
|
|
|
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype) |
|
latents0_1 = latents0_1.repeat(train_batch_size, 1, 1, 1) |
|
|
|
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype) |
|
latents0_2 = latents0_2.repeat(train_batch_size,1, 1, 1) |
|
|
|
with torch.no_grad(): |
|
encoder_hidden_states_list_1 = sd_prepare_input_decom( |
|
set_string_list_1, |
|
self.tokenizer, |
|
self.text_encoder, |
|
length = 40, |
|
bsz = train_batch_size, |
|
weight_dtype = weight_dtype |
|
) |
|
encoder_hidden_states_list_2 = sd_prepare_input_decom( |
|
set_string_list_2, |
|
self.tokenizer, |
|
self.text_encoder, |
|
length = 40, |
|
bsz = train_batch_size, |
|
weight_dtype = weight_dtype |
|
) |
|
|
|
for _ in range(max_diffusion_train_steps): |
|
with accelerator.accumulate(self.unet): |
|
latents_1 = latents0_1.clone().detach() |
|
noise_1 = torch.randn_like(latents_1) |
|
bsz = latents_1.shape[0] |
|
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device) |
|
timesteps_1 = timesteps_1.long() |
|
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1) |
|
|
|
latents_2 = latents0_2.clone().detach() |
|
noise_2 = torch.randn_like(latents_2) |
|
bsz = latents_2.shape[0] |
|
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device) |
|
timesteps_2 = timesteps_2.long() |
|
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2) |
|
|
|
register_attention_disentangled_control(self.unet, decom_controller_1) |
|
model_pred_1 = self.unet( |
|
noisy_latents_1, |
|
timesteps_1, |
|
encoder_hidden_states = encoder_hidden_states_list_1, |
|
).sample |
|
|
|
register_attention_disentangled_control(self.unet, decom_controller_2) |
|
model_pred_2 = self.unet( |
|
noisy_latents_2, |
|
timesteps_2, |
|
encoder_hidden_states = encoder_hidden_states_list_2, |
|
).sample |
|
|
|
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean") |
|
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean") |
|
loss = loss_1 + loss_2 |
|
accelerator.backward(loss) |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if global_step >=max_diffusion_train_steps: |
|
break |
|
accelerator.wait_for_everyone() |
|
accelerator.end_training() |
|
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype) |
|
|
|
@torch.no_grad() |
|
def backward_zT_to_z0_euler_decom( |
|
self, |
|
zT, |
|
cond_emb_list, |
|
uncond_emb=None, |
|
guidance_scale = 1, |
|
num_sampling_steps = 20, |
|
cond_controller = None, |
|
uncond_controller = None, |
|
mask_hard = None, |
|
mask_soft = None, |
|
orig_image = None, |
|
return_intermediate = False, |
|
strength = 1 |
|
): |
|
latent_cur = zT |
|
if uncond_emb is None: |
|
uncond_emb = torch.zeros(zT.shape[0], 77, self.unet.ca_dim).to(dtype = zT.dtype, device = zT.device) |
|
|
|
if mask_soft is not None: |
|
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype) |
|
length = init_latents_orig.shape[-1] |
|
noise = torch.randn_like(init_latents_orig) |
|
mask_soft = torch.nn.functional.interpolate(mask_soft.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) |
|
|
|
if mask_hard is not None: |
|
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype) |
|
length = init_latents_orig.shape[-1] |
|
noise = torch.randn_like(init_latents_orig) |
|
mask_hard = torch.nn.functional.interpolate(mask_hard.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) |
|
|
|
intermediate_list = [latent_cur.detach()] |
|
for i in tqdm(range(num_sampling_steps)): |
|
t = self.scheduler.timesteps[i] |
|
latent_input = self.scheduler.scale_model_input(latent_cur, t) |
|
|
|
register_attention_disentangled_control(self.unet, uncond_controller) |
|
noise_pred_uncond = self.unet( |
|
latent_input, |
|
t, |
|
encoder_hidden_states=uncond_emb, |
|
).sample |
|
|
|
register_attention_disentangled_control(self.unet, cond_controller) |
|
noise_pred_cond = self.unet( |
|
latent_input, |
|
t, |
|
encoder_hidden_states=cond_emb_list, |
|
).sample |
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) |
|
latent_cur = self.scheduler.step(noise_pred, t, latent_cur, generator = None, return_dict=False)[0] |
|
|
|
if return_intermediate is True: |
|
intermediate_list.append(latent_cur) |
|
|
|
if mask_hard is not None and mask_soft is not None and i <= strength *num_sampling_steps: |
|
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) |
|
mask = mask_soft.to(latent_cur.device, latent_cur.dtype) + mask_hard.to(latent_cur.device, latent_cur.dtype) |
|
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask)) |
|
|
|
elif mask_hard is not None and mask_soft is not None and i > strength *num_sampling_steps: |
|
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) |
|
mask = mask_hard.to(latent_cur.device, latent_cur.dtype) |
|
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask)) |
|
|
|
elif mask_hard is None and mask_soft is not None and i <= strength *num_sampling_steps: |
|
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) |
|
mask = mask_soft.to(latent_cur.device, latent_cur.dtype) |
|
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask)) |
|
|
|
elif mask_hard is None and mask_soft is not None and i > strength *num_sampling_steps: |
|
pass |
|
|
|
elif mask_hard is not None and mask_soft is None: |
|
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) |
|
mask = mask_hard.to(latent_cur.dtype) |
|
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask)) |
|
|
|
else: |
|
pass |
|
|
|
if return_intermediate is True: |
|
return latent_cur, intermediate_list |
|
else: |
|
return latent_cur |
|
|
|
@torch.no_grad() |
|
def sampling( |
|
self, |
|
set_string_list, |
|
cond_controller = None, |
|
uncond_controller = None, |
|
guidance_scale = 7, |
|
num_sampling_steps = 20, |
|
mask_hard = None, |
|
mask_soft = None, |
|
orig_image = None, |
|
strength = 1., |
|
num_imgs = 1, |
|
normal_token_id_list = [], |
|
seed = 1 |
|
): |
|
weight_dtype = torch.float16 |
|
self.scheduler.set_timesteps(num_sampling_steps) |
|
self.unet.to(device, dtype=weight_dtype) |
|
self.vae.to(device, dtype=weight_dtype) |
|
self.text_encoder.to(device, dtype=weight_dtype) |
|
|
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
|
|
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
zT = torch.randn(num_imgs, 4, self.resolution//vae_scale_factor,self.resolution//vae_scale_factor).to(device,dtype=weight_dtype) |
|
zT = zT * self.scheduler.init_noise_sigma |
|
|
|
cond_emb_list = sd_prepare_input_decom( |
|
set_string_list, |
|
self.tokenizer, |
|
self.text_encoder, |
|
length = 40, |
|
bsz = num_imgs, |
|
weight_dtype = weight_dtype, |
|
normal_token_id_list = normal_token_id_list |
|
) |
|
|
|
z0 = self.backward_zT_to_z0_euler_decom(zT, cond_emb_list, |
|
guidance_scale = guidance_scale, num_sampling_steps = num_sampling_steps, |
|
cond_controller = cond_controller, uncond_controller = uncond_controller, |
|
mask_hard = mask_hard, mask_soft = mask_soft, orig_image = orig_image, strength = strength |
|
) |
|
x0 = latent2image(z0, vae = self.vae) |
|
return x0 |
|
|
|
@torch.no_grad() |
|
def inference_with_mask( |
|
self, |
|
save_path, |
|
guidance_scale = 3, |
|
num_sampling_steps = 50, |
|
strength = 1, |
|
mask_soft = None, |
|
mask_hard= None, |
|
orig_image=None, |
|
mask_list = None, |
|
num_imgs = 1, |
|
seed = 1, |
|
set_string_list = None |
|
): |
|
if mask_list is not None: |
|
mask_list = [m.to(device) for m in mask_list] |
|
else: |
|
mask_list = self.mask_list |
|
if set_string_list is not None: |
|
self.set_string_list = set_string_list |
|
|
|
if mask_hard is not None and mask_soft is not None: |
|
check_mask_overlap_torch(mask_hard, mask_soft) |
|
null_controller = DummyController() |
|
decom_controller = GroupedCAController(mask_list = mask_list) |
|
|
|
x0 = self.sampling( |
|
self.set_string_list, |
|
guidance_scale = guidance_scale, |
|
num_sampling_steps = num_sampling_steps, |
|
strength = strength, |
|
cond_controller = decom_controller, |
|
uncond_controller = null_controller, |
|
mask_soft = mask_soft, |
|
mask_hard = mask_hard, |
|
orig_image = orig_image, |
|
num_imgs = num_imgs, |
|
seed = seed |
|
) |
|
save_images(x0, save_path) |
|
from PIL import Image |
|
return Image.open("example_tmp/text/out_text_0.png") |
|
|