second
Browse files- app copy.py +3 -2
- app.py +104 -80
- img.png +0 -0
- main copy.py +480 -0
- main.py +381 -391
- pipeline_dedit_sd.py +4 -3
- segment.py +2 -1
app copy.py
CHANGED
@@ -317,7 +317,7 @@ with gr.Blocks() as demo:
|
|
317 |
canvas_text_edit = gr.State() # store mask
|
318 |
with gr.Row():
|
319 |
with gr.Column():
|
320 |
-
canvas_text_edit = gr.Image(value = None, label="Editing results", show_label=True, height=LENGTH, width=LENGTH)
|
321 |
# canvas_text_edit = gr.Gallery(label = "Edited results")
|
322 |
|
323 |
with gr.Column():
|
@@ -342,8 +342,9 @@ with gr.Blocks() as demo:
|
|
342 |
tgt_idx,
|
343 |
guidance_scale
|
344 |
],
|
345 |
-
outputs = [
|
346 |
)
|
347 |
|
348 |
|
|
|
349 |
demo.queue().launch(share=True, debug=True)
|
|
|
317 |
canvas_text_edit = gr.State() # store mask
|
318 |
with gr.Row():
|
319 |
with gr.Column():
|
320 |
+
canvas_text_edit = gr.Image(value = None, type="pil", label="Editing results", show_label=True, height=LENGTH, width=LENGTH)
|
321 |
# canvas_text_edit = gr.Gallery(label = "Edited results")
|
322 |
|
323 |
with gr.Column():
|
|
|
342 |
tgt_idx,
|
343 |
guidance_scale
|
344 |
],
|
345 |
+
outputs = []
|
346 |
)
|
347 |
|
348 |
|
349 |
+
|
350 |
demo.queue().launch(share=True, debug=True)
|
app.py
CHANGED
@@ -10,7 +10,8 @@ from utils_mask import process_mask_to_follow_priority, mask_union, visualize_ma
|
|
10 |
from pathlib import Path
|
11 |
import subprocess
|
12 |
from PIL import Image
|
13 |
-
|
|
|
14 |
LENGTH=512 #length of the square area displaying/editing images
|
15 |
TRANSPARENCY = 150 # transparency of the mask in display
|
16 |
|
@@ -32,7 +33,7 @@ def create_segmentation(mask_np_list):
|
|
32 |
segmentation = Image.fromarray(np.uint8(segmentation*255))
|
33 |
return segmentation
|
34 |
|
35 |
-
def load_mask_ui(input_folder,load_edit = False):
|
36 |
if not load_edit:
|
37 |
mask_list, mask_label_list = load_mask(input_folder)
|
38 |
else:
|
@@ -44,28 +45,29 @@ def load_mask_ui(input_folder,load_edit = False):
|
|
44 |
|
45 |
return mask_np_list, mask_label_list
|
46 |
|
47 |
-
def load_image_ui(
|
48 |
try:
|
49 |
for img_path in Path(input_folder).iterdir():
|
50 |
-
if img_path.name in ["
|
51 |
image = Image.open(img_path)
|
52 |
mask_np_list, mask_label_list = load_mask_ui(input_folder, load_edit = load_edit)
|
53 |
image = image.convert('RGB')
|
54 |
-
segmentation = create_segmentation(mask_np_list)
|
|
|
55 |
return image, segmentation, mask_np_list, mask_label_list, image
|
56 |
except:
|
57 |
print("Image folder invalid: The folder should contain image.png")
|
58 |
return None, None, None, None, None
|
59 |
|
60 |
def run_edit_text(
|
61 |
-
input_folder,
|
62 |
num_tokens,
|
63 |
num_sampling_steps,
|
64 |
strength,
|
65 |
edge_thickness,
|
66 |
tgt_prompt,
|
67 |
tgt_idx,
|
68 |
-
guidance_scale
|
|
|
69 |
):
|
70 |
subprocess.run(["python",
|
71 |
"main.py" ,
|
@@ -89,14 +91,14 @@ def run_edit_text(
|
|
89 |
|
90 |
|
91 |
def run_optimization(
|
92 |
-
input_folder,
|
93 |
num_tokens,
|
94 |
embedding_learning_rate,
|
95 |
max_emb_train_steps,
|
96 |
diffusion_model_learning_rate,
|
97 |
max_diffusion_train_steps,
|
98 |
train_batch_size,
|
99 |
-
gradient_accumulation_steps
|
|
|
100 |
):
|
101 |
subprocess.run(["python",
|
102 |
"main.py" ,
|
@@ -124,6 +126,7 @@ def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
|
|
124 |
|
125 |
bimg_np = np.array(bimg)
|
126 |
mask_np = mask_np[:,:,np.newaxis]
|
|
|
127 |
try:
|
128 |
new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
|
129 |
return Image.fromarray(new_img_np)
|
@@ -159,6 +162,7 @@ def edit_mask_add(canvas, image, idx, mask_np_list):
|
|
159 |
return mask_np_list_updated, image_edit
|
160 |
|
161 |
def slider_release(index, image, mask_np_list_updated, mask_label_list):
|
|
|
162 |
if index > len(mask_np_list_updated):
|
163 |
return image, "out of range"
|
164 |
else:
|
@@ -168,7 +172,7 @@ def slider_release(index, image, mask_np_list_updated, mask_label_list):
|
|
168 |
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
|
169 |
return new_image, mask_label
|
170 |
|
171 |
-
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder):
|
172 |
try:
|
173 |
assert np.all(sum(mask_np_list_updated)==1)
|
174 |
except:
|
@@ -182,7 +186,7 @@ def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder):
|
|
182 |
savepath = os.path.join(input_folder, "seg_current.png")
|
183 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
184 |
|
185 |
-
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder):
|
186 |
try:
|
187 |
assert np.all(sum(mask_np_list_updated)==1)
|
188 |
except:
|
@@ -195,6 +199,10 @@ def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder):
|
|
195 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
196 |
|
197 |
|
|
|
|
|
|
|
|
|
198 |
from segment import run_segmentation
|
199 |
with gr.Blocks() as demo:
|
200 |
image = gr.State() # store mask
|
@@ -213,8 +221,7 @@ with gr.Blocks() as demo:
|
|
213 |
with gr.Tab(label="1 Edit mask"):
|
214 |
with gr.Row():
|
215 |
with gr.Column():
|
216 |
-
canvas = gr.Image(value =
|
217 |
-
input_folder = gr.Textbox(value="example1", label="input folder", interactive= True, )
|
218 |
|
219 |
segment_button = gr.Button("1.1 Run segmentation")
|
220 |
segment_button.click(run_segmentation,
|
@@ -223,23 +230,22 @@ with gr.Blocks() as demo:
|
|
223 |
|
224 |
text_button = gr.Button("1.2 Load original masks")
|
225 |
text_button.click(load_image_ui,
|
226 |
-
[
|
227 |
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
228 |
-
|
229 |
load_edit_button = gr.Button("1.2 Load edited masks")
|
230 |
load_edit_button.click(load_image_ui,
|
231 |
-
[
|
232 |
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
233 |
|
234 |
show_segment = gr.Checkbox(label = "Show Segmentation")
|
235 |
-
|
236 |
flag = gr.State(False)
|
237 |
show_segment.select(show_segmentation,
|
238 |
[image_loaded, segmentation, flag],
|
239 |
[canvas, flag])
|
240 |
-
|
241 |
-
mask_np_list_updated = copy.deepcopy(mask_np_list)
|
242 |
-
|
243 |
with gr.Column():
|
244 |
gr.Markdown("""<p style="text-align: center; font-size: 20px">Draw Mask</p>""")
|
245 |
slider = gr.Slider(0, 20, step=1, interactive=True)
|
@@ -256,17 +262,17 @@ with gr.Blocks() as demo:
|
|
256 |
|
257 |
save_button2 = gr.Button("Set and Save as edited masks")
|
258 |
save_button2.click( save_as_edit_mask,
|
259 |
-
[mask_np_list_updated, mask_label_list
|
260 |
[] )
|
261 |
|
262 |
save_button = gr.Button("Set and Save as original masks")
|
263 |
save_button.click( save_as_orig_mask,
|
264 |
-
[mask_np_list_updated, mask_label_list
|
265 |
[] )
|
266 |
|
267 |
back_button = gr.Button("Back to current seg")
|
268 |
back_button.click( load_mask_ui,
|
269 |
-
[
|
270 |
[ mask_np_list_updated,mask_label_list] )
|
271 |
|
272 |
add_mask_button = gr.Button("Add new empty mask")
|
@@ -274,70 +280,88 @@ with gr.Blocks() as demo:
|
|
274 |
[mask_np_list_updated, mask_label_list] ,
|
275 |
[mask_np_list_updated, mask_label_list] )
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
# with gr.Column():
|
280 |
-
# canvas_opt = gr.Image(value = canvas.value, type="pil", label="Loaded Image", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
|
288 |
-
|
289 |
-
|
290 |
|
291 |
-
|
292 |
-
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
316 |
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
# num_sampling_steps = gr.Textbox(value="50", label="Editing: Sampling steps", interactive= True )
|
324 |
-
# edge_thickness = gr.Textbox(value="10", label="Editing: Edge thickness", interactive= True )
|
325 |
-
# strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
# edge_thickness,
|
335 |
-
# tgt_prompt,
|
336 |
-
# tgt_idx,
|
337 |
-
# guidance_scale
|
338 |
-
# ],
|
339 |
-
# outputs = [canvas_text_edit]
|
340 |
-
# )
|
341 |
|
342 |
|
343 |
demo.queue().launch(share=True, debug=True)
|
|
|
10 |
from pathlib import Path
|
11 |
import subprocess
|
12 |
from PIL import Image
|
13 |
+
from functools import partial
|
14 |
+
from main import run_main
|
15 |
LENGTH=512 #length of the square area displaying/editing images
|
16 |
TRANSPARENCY = 150 # transparency of the mask in display
|
17 |
|
|
|
33 |
segmentation = Image.fromarray(np.uint8(segmentation*255))
|
34 |
return segmentation
|
35 |
|
36 |
+
def load_mask_ui(input_folder="example_tmp",load_edit = False):
|
37 |
if not load_edit:
|
38 |
mask_list, mask_label_list = load_mask(input_folder)
|
39 |
else:
|
|
|
45 |
|
46 |
return mask_np_list, mask_label_list
|
47 |
|
48 |
+
def load_image_ui(load_edit, input_folder="example_tmp"):
|
49 |
try:
|
50 |
for img_path in Path(input_folder).iterdir():
|
51 |
+
if img_path.name in ["img_512.png"]:
|
52 |
image = Image.open(img_path)
|
53 |
mask_np_list, mask_label_list = load_mask_ui(input_folder, load_edit = load_edit)
|
54 |
image = image.convert('RGB')
|
55 |
+
segmentation = create_segmentation(mask_np_list)
|
56 |
+
print("!!", len(mask_np_list))
|
57 |
return image, segmentation, mask_np_list, mask_label_list, image
|
58 |
except:
|
59 |
print("Image folder invalid: The folder should contain image.png")
|
60 |
return None, None, None, None, None
|
61 |
|
62 |
def run_edit_text(
|
|
|
63 |
num_tokens,
|
64 |
num_sampling_steps,
|
65 |
strength,
|
66 |
edge_thickness,
|
67 |
tgt_prompt,
|
68 |
tgt_idx,
|
69 |
+
guidance_scale,
|
70 |
+
input_folder="example_tmp"
|
71 |
):
|
72 |
subprocess.run(["python",
|
73 |
"main.py" ,
|
|
|
91 |
|
92 |
|
93 |
def run_optimization(
|
|
|
94 |
num_tokens,
|
95 |
embedding_learning_rate,
|
96 |
max_emb_train_steps,
|
97 |
diffusion_model_learning_rate,
|
98 |
max_diffusion_train_steps,
|
99 |
train_batch_size,
|
100 |
+
gradient_accumulation_steps,
|
101 |
+
input_folder = "example_tmp"
|
102 |
):
|
103 |
subprocess.run(["python",
|
104 |
"main.py" ,
|
|
|
126 |
|
127 |
bimg_np = np.array(bimg)
|
128 |
mask_np = mask_np[:,:,np.newaxis]
|
129 |
+
|
130 |
try:
|
131 |
new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
|
132 |
return Image.fromarray(new_img_np)
|
|
|
162 |
return mask_np_list_updated, image_edit
|
163 |
|
164 |
def slider_release(index, image, mask_np_list_updated, mask_label_list):
|
165 |
+
|
166 |
if index > len(mask_np_list_updated):
|
167 |
return image, "out of range"
|
168 |
else:
|
|
|
172 |
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
|
173 |
return new_image, mask_label
|
174 |
|
175 |
+
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
|
176 |
try:
|
177 |
assert np.all(sum(mask_np_list_updated)==1)
|
178 |
except:
|
|
|
186 |
savepath = os.path.join(input_folder, "seg_current.png")
|
187 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
188 |
|
189 |
+
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
|
190 |
try:
|
191 |
assert np.all(sum(mask_np_list_updated)==1)
|
192 |
except:
|
|
|
199 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
200 |
|
201 |
|
202 |
+
import shutil
|
203 |
+
if os.path.isdir("./example_tmp"):
|
204 |
+
shutil.rmtree("./example_tmp")
|
205 |
+
|
206 |
from segment import run_segmentation
|
207 |
with gr.Blocks() as demo:
|
208 |
image = gr.State() # store mask
|
|
|
221 |
with gr.Tab(label="1 Edit mask"):
|
222 |
with gr.Row():
|
223 |
with gr.Column():
|
224 |
+
canvas = gr.Image(value = "./img.png", type="numpy", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
|
|
225 |
|
226 |
segment_button = gr.Button("1.1 Run segmentation")
|
227 |
segment_button.click(run_segmentation,
|
|
|
230 |
|
231 |
text_button = gr.Button("1.2 Load original masks")
|
232 |
text_button.click(load_image_ui,
|
233 |
+
[ false] ,
|
234 |
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
235 |
+
|
236 |
load_edit_button = gr.Button("1.2 Load edited masks")
|
237 |
load_edit_button.click(load_image_ui,
|
238 |
+
[ true] ,
|
239 |
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
240 |
|
241 |
show_segment = gr.Checkbox(label = "Show Segmentation")
|
|
|
242 |
flag = gr.State(False)
|
243 |
show_segment.select(show_segmentation,
|
244 |
[image_loaded, segmentation, flag],
|
245 |
[canvas, flag])
|
246 |
+
|
247 |
+
# mask_np_list_updated.value = copy.deepcopy(mask_np_list.value) #!!
|
248 |
+
mask_np_list_updated = mask_np_list
|
249 |
with gr.Column():
|
250 |
gr.Markdown("""<p style="text-align: center; font-size: 20px">Draw Mask</p>""")
|
251 |
slider = gr.Slider(0, 20, step=1, interactive=True)
|
|
|
262 |
|
263 |
save_button2 = gr.Button("Set and Save as edited masks")
|
264 |
save_button2.click( save_as_edit_mask,
|
265 |
+
[mask_np_list_updated, mask_label_list] ,
|
266 |
[] )
|
267 |
|
268 |
save_button = gr.Button("Set and Save as original masks")
|
269 |
save_button.click( save_as_orig_mask,
|
270 |
+
[mask_np_list_updated, mask_label_list] ,
|
271 |
[] )
|
272 |
|
273 |
back_button = gr.Button("Back to current seg")
|
274 |
back_button.click( load_mask_ui,
|
275 |
+
[] ,
|
276 |
[ mask_np_list_updated,mask_label_list] )
|
277 |
|
278 |
add_mask_button = gr.Button("Add new empty mask")
|
|
|
280 |
[mask_np_list_updated, mask_label_list] ,
|
281 |
[mask_np_list_updated, mask_label_list] )
|
282 |
|
283 |
+
with gr.Tab(label="2 Optimization"):
|
284 |
+
with gr.Row():
|
|
|
|
|
285 |
|
286 |
+
with gr.Column():
|
287 |
+
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
288 |
+
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
289 |
+
embedding_learning_rate = gr.Textbox(value="0.0001", label="Embedding optimization: Learning rate", interactive= True )
|
290 |
+
max_emb_train_steps = gr.Number(value="200", label="embedding optimization: Training steps", interactive= True )
|
291 |
|
292 |
+
diffusion_model_learning_rate = gr.Textbox(value="0.00005", label="UNet Optimization: Learning rate", interactive= True )
|
293 |
+
max_diffusion_train_steps = gr.Number(value="200", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
294 |
|
295 |
+
train_batch_size = gr.Number(value="5", label="Batch size", interactive= True )
|
296 |
+
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
|
297 |
|
298 |
+
add_button = gr.Button("Run optimization")
|
299 |
+
|
300 |
+
run_optimization = partial(
|
301 |
+
run_main,
|
302 |
+
num_tokens=int(num_tokens.value),
|
303 |
+
embedding_learning_rate = float(embedding_learning_rate.value),
|
304 |
+
max_emb_train_steps = int(max_emb_train_steps.value),
|
305 |
+
diffusion_model_learning_rate= float(diffusion_model_learning_rate.value),
|
306 |
+
max_diffusion_train_steps = int(max_diffusion_train_steps.value),
|
307 |
+
train_batch_size=int(train_batch_size.value),
|
308 |
+
gradient_accumulation_steps=int(gradient_accumulation_steps.value)
|
309 |
+
)
|
310 |
+
add_button.click(run_optimization,
|
311 |
+
inputs = [],
|
312 |
+
outputs = []
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
+
with gr.Tab(label="3 Editing"):
|
317 |
+
with gr.Tab(label="3.1 Text-based editing"):
|
318 |
+
|
319 |
+
with gr.Row():
|
320 |
+
with gr.Column():
|
321 |
+
canvas_text_edit = gr.Image(value = None, type = "pil", label="Editing results", show_label=True)
|
322 |
+
# canvas_text_edit = gr.Gallery(label = "Edited results")
|
323 |
|
324 |
+
with gr.Column():
|
325 |
+
gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""")
|
326 |
+
|
327 |
+
tgt_prompt = gr.Textbox(value="White bag", label="Editing: Text prompt", interactive= True )
|
328 |
+
tgt_index = gr.Number(value="0", label="Editing: Object index", interactive= True )
|
329 |
+
guidance_scale = gr.Textbox(value="6", label="Editing: CFG guidance scale", interactive= True )
|
330 |
+
num_sampling_steps = gr.Number(value="50", label="Editing: Sampling steps", interactive= True )
|
331 |
+
edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
|
332 |
+
strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
|
333 |
+
|
334 |
+
add_button = gr.Button("Run Editing")
|
335 |
+
run_edit_text = partial(
|
336 |
+
run_main,
|
337 |
+
load_trained=True,
|
338 |
+
text=True,
|
339 |
+
num_tokens = int(num_tokens.value),
|
340 |
+
guidance_scale = float(guidance_scale.value),
|
341 |
+
num_sampling_steps = int(num_sampling_steps.value),
|
342 |
+
strength = float(strength.value),
|
343 |
+
edge_thickness = int(edge_thickness.value),
|
344 |
+
num_imgs = 1,
|
345 |
+
tgt_prompt = tgt_prompt.value,
|
346 |
+
tgt_index = int(tgt_index.value)
|
347 |
+
)
|
348 |
+
|
349 |
+
add_button.click(run_edit_text,
|
350 |
+
inputs = [],
|
351 |
+
outputs = [canvas_text_edit]
|
352 |
+
)
|
353 |
|
354 |
+
def load_pil_img():
|
355 |
+
from PIL import Image
|
356 |
+
return Image.open("example_tmp/text/out_text_0.png")
|
|
|
|
|
|
|
357 |
|
358 |
+
load_button = gr.Button("Load results")
|
359 |
+
load_button.click(load_pil_img,
|
360 |
+
inputs = [],
|
361 |
+
outputs = [canvas_text_edit]
|
362 |
+
)
|
363 |
+
|
364 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
|
366 |
|
367 |
demo.queue().launch(share=True, debug=True)
|
img.png
ADDED
main copy.py
ADDED
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
from peft import LoraConfig
|
6 |
+
from old.pipeline_dedit_sdxl import DEditSDXLPipeline
|
7 |
+
from pipeline_dedit_sd import DEditSDPipeline
|
8 |
+
from utils import load_image, load_mask, load_mask_edit
|
9 |
+
from utils_mask import process_mask_move_torch, process_mask_remove_torch, mask_union_torch, mask_substract_torch, create_outer_edge_mask_torch
|
10 |
+
from utils_mask import check_mask_overlap_torch, check_cover_all_torch, visualize_mask_list, get_mask_difference_torch, save_mask_list_to_npys
|
11 |
+
|
12 |
+
parser = argparse.ArgumentParser()
|
13 |
+
parser.add_argument("--name", type=str,required=True, default=None)
|
14 |
+
parser.add_argument("--name_2", type=str,required=False, default=None)
|
15 |
+
parser.add_argument("--dpm", type=str,required=True, default="sd")
|
16 |
+
parser.add_argument("--resolution", type=int, default=1024)
|
17 |
+
parser.add_argument("--seed", type=int, default=42)
|
18 |
+
parser.add_argument("--embedding_learning_rate", type=float, default=1e-4)
|
19 |
+
parser.add_argument("--max_emb_train_steps", type=int, default=200)
|
20 |
+
parser.add_argument("--diffusion_model_learning_rate", type=float, default=5e-5)
|
21 |
+
parser.add_argument("--max_diffusion_train_steps", type=int, default=200)
|
22 |
+
parser.add_argument("--train_batch_size", type=int, default=1)
|
23 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
24 |
+
parser.add_argument("--num_tokens", type=int, default=1)
|
25 |
+
|
26 |
+
|
27 |
+
parser.add_argument("--load_trained", default=False, action="store_true" )
|
28 |
+
parser.add_argument("--num_sampling_steps", type=int, default=50)
|
29 |
+
parser.add_argument("--guidance_scale", type=float, default = 3 )
|
30 |
+
parser.add_argument("--strength", type=float, default=0.8)
|
31 |
+
|
32 |
+
parser.add_argument("--train_full_lora", default=False, action="store_true" )
|
33 |
+
parser.add_argument("--lora_rank", type=int, default=4)
|
34 |
+
parser.add_argument("--lora_alpha", type=int, default=4)
|
35 |
+
|
36 |
+
parser.add_argument("--prompt_auxin_list", nargs="+", type=str, default = None)
|
37 |
+
parser.add_argument("--prompt_auxin_idx_list", nargs="+", type=int, default = None)
|
38 |
+
|
39 |
+
# general editing configs
|
40 |
+
parser.add_argument("--load_edited_mask", default=False, action="store_true")
|
41 |
+
parser.add_argument("--load_edited_processed_mask", default=False, action="store_true")
|
42 |
+
parser.add_argument("--edge_thickness", type=int, default=20)
|
43 |
+
parser.add_argument("--num_imgs", type=int, default = 1 )
|
44 |
+
parser.add_argument('--active_mask_list', nargs="+", type=int)
|
45 |
+
parser.add_argument("--tgt_index", type=int, default=None)
|
46 |
+
|
47 |
+
# recon
|
48 |
+
parser.add_argument("--recon", default=False, action="store_true" )
|
49 |
+
parser.add_argument("--recon_an_item", default=False, action="store_true" )
|
50 |
+
parser.add_argument("--recon_prompt", type=str, default=None)
|
51 |
+
|
52 |
+
# text-based editing
|
53 |
+
parser.add_argument("--text", default=False, action="store_true")
|
54 |
+
parser.add_argument("--tgt_prompt", type=str, default=None)
|
55 |
+
|
56 |
+
# image-based editing
|
57 |
+
parser.add_argument("--image", default=False, action="store_true" )
|
58 |
+
parser.add_argument("--src_index", type=int, default=None)
|
59 |
+
parser.add_argument("--tgt_name", type=str, default=None)
|
60 |
+
|
61 |
+
# mask-based move
|
62 |
+
parser.add_argument("--move_resize", default=False, action="store_true" )
|
63 |
+
parser.add_argument('--tgt_indices_list', nargs="+", type=int)
|
64 |
+
parser.add_argument("--delta_x_list", nargs="+", type=int)
|
65 |
+
parser.add_argument("--delta_y_list", nargs="+", type=int)
|
66 |
+
parser.add_argument("--priority_list", nargs="+", type=int)
|
67 |
+
parser.add_argument("--force_mask_remain", type=int, default=None)
|
68 |
+
parser.add_argument("--resize_list", nargs="+", type=float)
|
69 |
+
|
70 |
+
# remove
|
71 |
+
parser.add_argument("--remove", default=False, action="store_true" )
|
72 |
+
parser.add_argument("--load_edited_removemask", default=False, action="store_true")
|
73 |
+
|
74 |
+
args = parser.parse_args()
|
75 |
+
|
76 |
+
|
77 |
+
def run_main(
|
78 |
+
name=None,
|
79 |
+
name_2=None,
|
80 |
+
dpm="sd",
|
81 |
+
resolution=1024,
|
82 |
+
seed=42,
|
83 |
+
embedding_learning_rate=1e-4,
|
84 |
+
max_emb_train_steps=200,
|
85 |
+
diffusion_model_learning_rate=5e-5,
|
86 |
+
max_diffusion_train_steps=200,
|
87 |
+
train_batch_size=1,
|
88 |
+
gradient_accumulation_steps=1,
|
89 |
+
num_tokens=1,
|
90 |
+
|
91 |
+
load_trained="store_true" ,
|
92 |
+
num_sampling_steps=50,
|
93 |
+
guidance_scale= 3 ,
|
94 |
+
strength=0.8,
|
95 |
+
|
96 |
+
train_full_lora="store_true" ,
|
97 |
+
lora_rank=4,
|
98 |
+
lora_alpha=4,
|
99 |
+
|
100 |
+
prompt_auxin_list = None,
|
101 |
+
prompt_auxin_idx_list= None,
|
102 |
+
|
103 |
+
load_edited_mask="store_true",
|
104 |
+
load_edited_processed_mask="store_true",
|
105 |
+
edge_thickness=20,
|
106 |
+
num_imgs= 1 ,
|
107 |
+
active_mask_list = None,
|
108 |
+
tgt_index=None,
|
109 |
+
|
110 |
+
recon=False ,
|
111 |
+
recon_an_item=False,
|
112 |
+
recon_prompt=None,
|
113 |
+
|
114 |
+
text="store_true",
|
115 |
+
tgt_prompt=None,
|
116 |
+
|
117 |
+
image="store_true" ,
|
118 |
+
src_index=None,
|
119 |
+
tgt_name=None,
|
120 |
+
|
121 |
+
move_resize="store_true" ,
|
122 |
+
tgt_indices_list=None,
|
123 |
+
delta_x_list=None,
|
124 |
+
delta_y_list=None,
|
125 |
+
priority_list=None,
|
126 |
+
force_mask_remain=None,
|
127 |
+
resize_list=None,
|
128 |
+
|
129 |
+
remove=False,
|
130 |
+
load_edited_removemask=False
|
131 |
+
):
|
132 |
+
torch.cuda.manual_seed_all(args.seed)
|
133 |
+
torch.manual_seed(args.seed)
|
134 |
+
base_input_folder = "."
|
135 |
+
base_output_folder = "."
|
136 |
+
|
137 |
+
input_folder = os.path.join(base_input_folder, args.name)
|
138 |
+
|
139 |
+
|
140 |
+
mask_list, mask_label_list = load_mask(input_folder)
|
141 |
+
assert mask_list[0].shape[0] == args.resolution, "Segmentation should be done on size {}".format(args.resolution)
|
142 |
+
try:
|
143 |
+
image_gt = load_image(os.path.join(input_folder, "img_{}.png".format(args.resolution) ), size = args.resolution)
|
144 |
+
except:
|
145 |
+
image_gt = load_image(os.path.join(input_folder, "img_{}.jpg".format(args.resolution) ), size = args.resolution)
|
146 |
+
|
147 |
+
if args.image:
|
148 |
+
input_folder_2 = os.path.join(base_input_folder, args.name_2)
|
149 |
+
mask_list_2, mask_label_list_2 = load_mask(input_folder_2)
|
150 |
+
assert mask_list_2[0].shape[0] == args.resolution, "Segmentation should be done on size {}".format(args.resolution)
|
151 |
+
try:
|
152 |
+
image_gt_2 = load_image(os.path.join(input_folder_2, "img_{}.png".format(args.resolution) ), size = args.resolution)
|
153 |
+
except:
|
154 |
+
image_gt_2 = load_image(os.path.join(input_folder_2, "img_{}.jpg".format(args.resolution) ), size = args.resolution)
|
155 |
+
output_dir = os.path.join(base_output_folder, args.name + "_" + args.name_2)
|
156 |
+
os.makedirs(output_dir, exist_ok = True)
|
157 |
+
else:
|
158 |
+
output_dir = os.path.join(base_output_folder, args.name)
|
159 |
+
os.makedirs(output_dir, exist_ok = True)
|
160 |
+
|
161 |
+
if args.dpm == "sd":
|
162 |
+
if args.image:
|
163 |
+
pipe = DEditSDPipeline(mask_list, mask_label_list, mask_list_2, mask_label_list_2, resolution = args.resolution, num_tokens = args.num_tokens)
|
164 |
+
else:
|
165 |
+
pipe = DEditSDPipeline(mask_list, mask_label_list, resolution = args.resolution, num_tokens = args.num_tokens)
|
166 |
+
|
167 |
+
elif args.dpm == "sdxl":
|
168 |
+
if args.image:
|
169 |
+
pipe = DEditSDXLPipeline(mask_list, mask_label_list, mask_list_2, mask_label_list_2, resolution = args.resolution, num_tokens = args.num_tokens)
|
170 |
+
else:
|
171 |
+
pipe = DEditSDXLPipeline(mask_list, mask_label_list, resolution = args.resolution, num_tokens = args.num_tokens)
|
172 |
+
|
173 |
+
else:
|
174 |
+
raise NotImplementedError
|
175 |
+
|
176 |
+
set_string_list = pipe.set_string_list
|
177 |
+
if args.prompt_auxin_list is not None:
|
178 |
+
for auxin_idx, auxin_prompt in zip(args.prompt_auxin_idx_list, args.prompt_auxin_list):
|
179 |
+
set_string_list[auxin_idx] = auxin_prompt.replace("*", set_string_list[auxin_idx] )
|
180 |
+
print(set_string_list)
|
181 |
+
|
182 |
+
if args.image:
|
183 |
+
set_string_list_2 = pipe.set_string_list_2
|
184 |
+
print(set_string_list_2)
|
185 |
+
|
186 |
+
if args.load_trained:
|
187 |
+
unet_save_path = os.path.join(output_dir, "unet.pt")
|
188 |
+
unet_state_dict = torch.load(unet_save_path)
|
189 |
+
text_encoder1_save_path = os.path.join(output_dir, "text_encoder1.pt")
|
190 |
+
text_encoder1_state_dict = torch.load(text_encoder1_save_path)
|
191 |
+
if args.dpm == "sdxl":
|
192 |
+
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
|
193 |
+
text_encoder2_state_dict = torch.load(text_encoder2_save_path)
|
194 |
+
|
195 |
+
if 'lora' in ''.join(unet_state_dict.keys()):
|
196 |
+
unet_lora_config = LoraConfig(
|
197 |
+
r=args.lora_rank,
|
198 |
+
lora_alpha=args.lora_alpha,
|
199 |
+
init_lora_weights="gaussian",
|
200 |
+
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
201 |
+
)
|
202 |
+
pipe.unet.add_adapter(unet_lora_config)
|
203 |
+
|
204 |
+
pipe.unet.load_state_dict(unet_state_dict)
|
205 |
+
pipe.text_encoder.load_state_dict(text_encoder1_state_dict)
|
206 |
+
if args.dpm == "sdxl":
|
207 |
+
pipe.text_encoder_2.load_state_dict(text_encoder2_state_dict)
|
208 |
+
else:
|
209 |
+
if args.image:
|
210 |
+
pipe.mask_list = [m.cuda() for m in pipe.mask_list]
|
211 |
+
pipe.mask_list_2 = [m.cuda() for m in pipe.mask_list_2]
|
212 |
+
pipe.train_emb_2imgs(
|
213 |
+
image_gt,
|
214 |
+
image_gt_2,
|
215 |
+
set_string_list,
|
216 |
+
set_string_list_2,
|
217 |
+
gradient_accumulation_steps = args.gradient_accumulation_steps,
|
218 |
+
embedding_learning_rate = args.embedding_learning_rate,
|
219 |
+
max_emb_train_steps = args.max_emb_train_steps,
|
220 |
+
train_batch_size = args.train_batch_size,
|
221 |
+
)
|
222 |
+
|
223 |
+
pipe.train_model_2imgs(
|
224 |
+
image_gt,
|
225 |
+
image_gt_2,
|
226 |
+
set_string_list,
|
227 |
+
set_string_list_2,
|
228 |
+
gradient_accumulation_steps = args.gradient_accumulation_steps,
|
229 |
+
max_diffusion_train_steps = args.max_diffusion_train_steps,
|
230 |
+
diffusion_model_learning_rate = args.diffusion_model_learning_rate ,
|
231 |
+
train_batch_size =args.train_batch_size,
|
232 |
+
train_full_lora = args.train_full_lora,
|
233 |
+
lora_rank = args.lora_rank,
|
234 |
+
lora_alpha = args.lora_alpha
|
235 |
+
)
|
236 |
+
|
237 |
+
else:
|
238 |
+
pipe.mask_list = [m.cuda() for m in pipe.mask_list]
|
239 |
+
pipe.train_emb(
|
240 |
+
image_gt,
|
241 |
+
set_string_list,
|
242 |
+
gradient_accumulation_steps = args.gradient_accumulation_steps,
|
243 |
+
embedding_learning_rate = args.embedding_learning_rate,
|
244 |
+
max_emb_train_steps = args.max_emb_train_steps,
|
245 |
+
train_batch_size = args.train_batch_size,
|
246 |
+
)
|
247 |
+
|
248 |
+
pipe.train_model(
|
249 |
+
image_gt,
|
250 |
+
set_string_list,
|
251 |
+
gradient_accumulation_steps = args.gradient_accumulation_steps,
|
252 |
+
max_diffusion_train_steps = args.max_diffusion_train_steps,
|
253 |
+
diffusion_model_learning_rate = args.diffusion_model_learning_rate ,
|
254 |
+
train_batch_size = args.train_batch_size,
|
255 |
+
train_full_lora = args.train_full_lora,
|
256 |
+
lora_rank = args.lora_rank,
|
257 |
+
lora_alpha = args.lora_alpha
|
258 |
+
)
|
259 |
+
|
260 |
+
|
261 |
+
unet_save_path = os.path.join(output_dir, "unet.pt")
|
262 |
+
torch.save(pipe.unet.state_dict(),unet_save_path )
|
263 |
+
text_encoder1_save_path = os.path.join(output_dir, "text_encoder1.pt")
|
264 |
+
torch.save(pipe.text_encoder.state_dict(), text_encoder1_save_path)
|
265 |
+
if args.dpm == "sdxl":
|
266 |
+
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
|
267 |
+
torch.save(pipe.text_encoder_2.state_dict(), text_encoder2_save_path )
|
268 |
+
|
269 |
+
|
270 |
+
if args.recon:
|
271 |
+
output_dir = os.path.join(output_dir, "recon")
|
272 |
+
os.makedirs(output_dir, exist_ok = True)
|
273 |
+
if args.recon_an_item:
|
274 |
+
mask_list = [torch.from_numpy(np.ones_like(mask_list[0].numpy()))]
|
275 |
+
tgt_string = set_string_list[args.tgt_index]
|
276 |
+
tgt_string = args.recon_prompt.replace("*", tgt_string)
|
277 |
+
set_string_list = [tgt_string]
|
278 |
+
print(set_string_list)
|
279 |
+
save_path = os.path.join(output_dir, "out_recon.png")
|
280 |
+
x_np = pipe.inference_with_mask(
|
281 |
+
save_path,
|
282 |
+
guidance_scale = args.guidance_scale,
|
283 |
+
num_sampling_steps = args.num_sampling_steps,
|
284 |
+
seed = args.seed,
|
285 |
+
num_imgs = args.num_imgs,
|
286 |
+
set_string_list = set_string_list,
|
287 |
+
mask_list = mask_list
|
288 |
+
)
|
289 |
+
|
290 |
+
if args.text:
|
291 |
+
print("Text-guided editing ")
|
292 |
+
output_dir = os.path.join(output_dir, "text")
|
293 |
+
os.makedirs(output_dir, exist_ok = True)
|
294 |
+
save_path = os.path.join(output_dir, "out_text.png")
|
295 |
+
set_string_list[args.tgt_index] = args.tgt_prompt
|
296 |
+
mask_active = torch.zeros_like(mask_list[0])
|
297 |
+
mask_active = mask_union_torch(mask_active, mask_list[args.tgt_index])
|
298 |
+
|
299 |
+
if args.active_mask_list is not None:
|
300 |
+
for midx in args.active_mask_list:
|
301 |
+
mask_active = mask_union_torch(mask_active, mask_list[midx])
|
302 |
+
|
303 |
+
if args.load_edited_mask:
|
304 |
+
mask_list_edited, mask_label_list_edited = load_mask_edit(input_folder)
|
305 |
+
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
306 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
307 |
+
mask_list = mask_list_edited
|
308 |
+
save_path = os.path.join(output_dir, "out_textEdited.png")
|
309 |
+
|
310 |
+
mask_hard = mask_substract_torch(torch.ones_like(mask_list[0]), mask_active)
|
311 |
+
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = args.edge_thickness)
|
312 |
+
mask_hard = mask_substract_torch(mask_hard, mask_soft)
|
313 |
+
|
314 |
+
pipe.inference_with_mask(
|
315 |
+
save_path,
|
316 |
+
orig_image = image_gt,
|
317 |
+
set_string_list = set_string_list,
|
318 |
+
guidance_scale = args.guidance_scale,
|
319 |
+
strength = args.strength,
|
320 |
+
num_imgs = args.num_imgs,
|
321 |
+
mask_hard= mask_hard,
|
322 |
+
mask_soft = mask_soft,
|
323 |
+
mask_list = mask_list,
|
324 |
+
seed = args.seed,
|
325 |
+
num_sampling_steps = args.num_sampling_steps
|
326 |
+
)
|
327 |
+
|
328 |
+
if args.remove:
|
329 |
+
output_dir = os.path.join(output_dir, "remove")
|
330 |
+
save_path = os.path.join(output_dir, "out_remove.png")
|
331 |
+
os.makedirs(output_dir, exist_ok = True)
|
332 |
+
mask_active = torch.zeros_like(mask_list[0])
|
333 |
+
|
334 |
+
if args.load_edited_mask:
|
335 |
+
mask_list_edited, _ = load_mask_edit(input_folder)
|
336 |
+
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
337 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
338 |
+
mask_list = mask_list_edited
|
339 |
+
|
340 |
+
if args.load_edited_processed_mask:
|
341 |
+
# manually edit or draw masks after removing one index, then load
|
342 |
+
mask_list_processed, _ = load_mask_edit(output_dir)
|
343 |
+
mask_remain = get_mask_difference_torch(mask_list_processed, mask_list)
|
344 |
+
else:
|
345 |
+
# generate masks after removing one index, using nearest neighbor algorithm
|
346 |
+
mask_list_processed, mask_remain = process_mask_remove_torch(mask_list, args.tgt_index)
|
347 |
+
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
|
348 |
+
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_removed.png"))
|
349 |
+
check_cover_all_torch(*mask_list_processed)
|
350 |
+
mask_active = mask_union_torch(mask_active, mask_remain)
|
351 |
+
|
352 |
+
if args.active_mask_list is not None:
|
353 |
+
for midx in args.active_mask_list:
|
354 |
+
mask_active = mask_union_torch(mask_active, mask_list[midx])
|
355 |
+
|
356 |
+
mask_hard = 1 - mask_active
|
357 |
+
mask_soft = create_outer_edge_mask_torch(mask_remain, edge_thickness = args.edge_thickness)
|
358 |
+
mask_hard = mask_substract_torch(mask_hard, mask_soft)
|
359 |
+
|
360 |
+
pipe.inference_with_mask(
|
361 |
+
save_path,
|
362 |
+
orig_image = image_gt,
|
363 |
+
guidance_scale = args.guidance_scale,
|
364 |
+
strength = args.strength,
|
365 |
+
num_imgs = args.num_imgs,
|
366 |
+
mask_hard= mask_hard,
|
367 |
+
mask_soft = mask_soft,
|
368 |
+
mask_list = mask_list_processed,
|
369 |
+
seed = args.seed,
|
370 |
+
num_sampling_steps = args.num_sampling_steps
|
371 |
+
)
|
372 |
+
|
373 |
+
if args.image:
|
374 |
+
output_dir = os.path.join(output_dir, "image")
|
375 |
+
save_path = os.path.join(output_dir, "out_image.png")
|
376 |
+
os.makedirs(output_dir, exist_ok = True)
|
377 |
+
mask_active = torch.zeros_like(mask_list[0])
|
378 |
+
|
379 |
+
if None not in (args.tgt_name, args.src_index, args.tgt_index):
|
380 |
+
if args.tgt_name == args.name:
|
381 |
+
set_string_list_tgt = set_string_list
|
382 |
+
set_string_list_src = set_string_list_2
|
383 |
+
image_tgt = image_gt
|
384 |
+
if args.load_edited_mask:
|
385 |
+
mask_list_edited, _ = load_mask_edit(input_folder)
|
386 |
+
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
387 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
388 |
+
mask_list = mask_list_edited
|
389 |
+
save_path = os.path.join(output_dir, "out_imageEdited.png")
|
390 |
+
mask_list_tgt = mask_list
|
391 |
+
|
392 |
+
elif args.tgt_name == args.name_2:
|
393 |
+
set_string_list_tgt = set_string_list_2
|
394 |
+
set_string_list_src = set_string_list
|
395 |
+
image_tgt = image_gt_2
|
396 |
+
if args.load_edited_mask:
|
397 |
+
mask_list_2_edited, _ = load_mask_edit(input_folder_2)
|
398 |
+
mask_diff = get_mask_difference_torch(mask_list_2_edited, mask_list_2)
|
399 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
400 |
+
mask_list_2 = mask_list_2_edited
|
401 |
+
save_path = os.path.join(output_dir, "out_imageEdited.png")
|
402 |
+
mask_list_tgt = mask_list_2
|
403 |
+
else:
|
404 |
+
exit("tgt_name should be either name or name_2")
|
405 |
+
|
406 |
+
set_string_list_tgt[args.tgt_index] = set_string_list_src[args.src_index]
|
407 |
+
|
408 |
+
mask_active = mask_list_tgt[args.tgt_index]
|
409 |
+
mask_frozen = (1-mask_active.float()).to(mask_active.device)
|
410 |
+
mask_soft = create_outer_edge_mask_torch(mask_active.cpu(), edge_thickness = args.edge_thickness)
|
411 |
+
mask_hard = mask_substract_torch(mask_frozen.cpu(), mask_soft.cpu())
|
412 |
+
|
413 |
+
mask_list_tgt = [m.cuda() for m in mask_list_tgt]
|
414 |
+
|
415 |
+
pipe.inference_with_mask(
|
416 |
+
save_path,
|
417 |
+
set_string_list = set_string_list_tgt,
|
418 |
+
mask_list = mask_list_tgt,
|
419 |
+
guidance_scale = args.guidance_scale,
|
420 |
+
num_sampling_steps = args.num_sampling_steps,
|
421 |
+
mask_hard = mask_hard.cuda(),
|
422 |
+
mask_soft = mask_soft.cuda(),
|
423 |
+
num_imgs = args.num_imgs,
|
424 |
+
orig_image = image_tgt,
|
425 |
+
strength = args.strength,
|
426 |
+
)
|
427 |
+
|
428 |
+
if args.move_resize:
|
429 |
+
output_dir = os.path.join(output_dir, "move_resize")
|
430 |
+
os.makedirs(output_dir, exist_ok = True)
|
431 |
+
save_path = os.path.join(output_dir, "out_moveresize.png")
|
432 |
+
mask_active = torch.zeros_like(mask_list[0])
|
433 |
+
|
434 |
+
if args.load_edited_mask:
|
435 |
+
mask_list_edited, _ = load_mask_edit(input_folder)
|
436 |
+
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
437 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
438 |
+
mask_list = mask_list_edited
|
439 |
+
# save_path = os.path.join(output_dir, "out_moveresizeEdited.png")
|
440 |
+
|
441 |
+
if args.load_edited_processed_mask:
|
442 |
+
mask_list_processed, _ = load_mask_edit(output_dir)
|
443 |
+
mask_remain = get_mask_difference_torch(mask_list_processed, mask_list)
|
444 |
+
else:
|
445 |
+
mask_list_processed, mask_remain = process_mask_move_torch(
|
446 |
+
mask_list,
|
447 |
+
args.tgt_indices_list,
|
448 |
+
args.delta_x_list,
|
449 |
+
args.delta_y_list, args.priority_list,
|
450 |
+
force_mask_remain = args.force_mask_remain,
|
451 |
+
resize_list = args.resize_list
|
452 |
+
)
|
453 |
+
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
|
454 |
+
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_move_resize.png"))
|
455 |
+
active_idxs = args.tgt_indices_list
|
456 |
+
|
457 |
+
mask_active = mask_union_torch(mask_active, *[m for midx, m in enumerate(mask_list_processed) if midx in active_idxs])
|
458 |
+
mask_active = mask_union_torch(mask_remain, mask_active)
|
459 |
+
if args.active_mask_list is not None:
|
460 |
+
for midx in args.active_mask_list:
|
461 |
+
mask_active = mask_union_torch(mask_active, mask_list_processed[midx])
|
462 |
+
|
463 |
+
mask_frozen =(1 - mask_active.float())
|
464 |
+
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = args.edge_thickness)
|
465 |
+
mask_hard = mask_substract_torch(mask_frozen, mask_soft)
|
466 |
+
|
467 |
+
check_mask_overlap_torch(mask_hard, mask_soft)
|
468 |
+
|
469 |
+
pipe.inference_with_mask(
|
470 |
+
save_path,
|
471 |
+
strength = args.strength,
|
472 |
+
orig_image = image_gt,
|
473 |
+
guidance_scale = args.guidance_scale,
|
474 |
+
num_sampling_steps = args.num_sampling_steps,
|
475 |
+
num_imgs = args.num_imgs,
|
476 |
+
mask_hard= mask_hard,
|
477 |
+
mask_soft = mask_soft,
|
478 |
+
mask_list = mask_list_processed,
|
479 |
+
seed = args.seed
|
480 |
+
)
|
main.py
CHANGED
@@ -9,416 +9,406 @@ from utils import load_image, load_mask, load_mask_edit
|
|
9 |
from utils_mask import process_mask_move_torch, process_mask_remove_torch, mask_union_torch, mask_substract_torch, create_outer_edge_mask_torch
|
10 |
from utils_mask import check_mask_overlap_torch, check_cover_all_torch, visualize_mask_list, get_mask_difference_torch, save_mask_list_to_npys
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
torch.cuda.manual_seed_all(args.seed)
|
77 |
-
torch.manual_seed(args.seed)
|
78 |
-
base_input_folder = "."
|
79 |
-
base_output_folder = "."
|
80 |
-
|
81 |
-
input_folder = os.path.join(base_input_folder, args.name)
|
82 |
-
|
83 |
-
|
84 |
-
mask_list, mask_label_list = load_mask(input_folder)
|
85 |
-
assert mask_list[0].shape[0] == args.resolution, "Segmentation should be done on size {}".format(args.resolution)
|
86 |
-
try:
|
87 |
-
image_gt = load_image(os.path.join(input_folder, "img_{}.png".format(args.resolution) ), size = args.resolution)
|
88 |
-
except:
|
89 |
-
image_gt = load_image(os.path.join(input_folder, "img_{}.jpg".format(args.resolution) ), size = args.resolution)
|
90 |
-
|
91 |
-
if args.image:
|
92 |
-
input_folder_2 = os.path.join(base_input_folder, args.name_2)
|
93 |
-
mask_list_2, mask_label_list_2 = load_mask(input_folder_2)
|
94 |
-
assert mask_list_2[0].shape[0] == args.resolution, "Segmentation should be done on size {}".format(args.resolution)
|
95 |
try:
|
96 |
-
|
97 |
except:
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
108 |
else:
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
114 |
else:
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
set_string_list_2 = pipe.set_string_list_2
|
128 |
-
print(set_string_list_2)
|
129 |
-
|
130 |
-
if args.load_trained:
|
131 |
-
unet_save_path = os.path.join(output_dir, "unet.pt")
|
132 |
-
unet_state_dict = torch.load(unet_save_path)
|
133 |
-
text_encoder1_save_path = os.path.join(output_dir, "text_encoder1.pt")
|
134 |
-
text_encoder1_state_dict = torch.load(text_encoder1_save_path)
|
135 |
-
if args.dpm == "sdxl":
|
136 |
-
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
|
137 |
-
text_encoder2_state_dict = torch.load(text_encoder2_save_path)
|
138 |
-
|
139 |
-
if 'lora' in ''.join(unet_state_dict.keys()):
|
140 |
-
unet_lora_config = LoraConfig(
|
141 |
-
r=args.lora_rank,
|
142 |
-
lora_alpha=args.lora_alpha,
|
143 |
-
init_lora_weights="gaussian",
|
144 |
-
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
145 |
)
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
diffusion_model_learning_rate = args.diffusion_model_learning_rate ,
|
175 |
-
train_batch_size =args.train_batch_size,
|
176 |
-
train_full_lora = args.train_full_lora,
|
177 |
-
lora_rank = args.lora_rank,
|
178 |
-
lora_alpha = args.lora_alpha
|
179 |
-
)
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
pipe.
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
202 |
)
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
if args.dpm == "sdxl":
|
210 |
-
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
|
211 |
-
torch.save(pipe.text_encoder_2.state_dict(), text_encoder2_save_path )
|
212 |
-
|
213 |
-
|
214 |
-
if args.recon:
|
215 |
-
output_dir = os.path.join(output_dir, "recon")
|
216 |
-
os.makedirs(output_dir, exist_ok = True)
|
217 |
-
if args.recon_an_item:
|
218 |
-
mask_list = [torch.from_numpy(np.ones_like(mask_list[0].numpy()))]
|
219 |
-
tgt_string = set_string_list[args.tgt_index]
|
220 |
-
tgt_string = args.recon_prompt.replace("*", tgt_string)
|
221 |
-
set_string_list = [tgt_string]
|
222 |
-
print(set_string_list)
|
223 |
-
save_path = os.path.join(output_dir, "out_recon.png")
|
224 |
-
x_np = pipe.inference_with_mask(
|
225 |
-
save_path,
|
226 |
-
guidance_scale = args.guidance_scale,
|
227 |
-
num_sampling_steps = args.num_sampling_steps,
|
228 |
-
seed = args.seed,
|
229 |
-
num_imgs = args.num_imgs,
|
230 |
-
set_string_list = set_string_list,
|
231 |
-
mask_list = mask_list
|
232 |
-
)
|
233 |
-
|
234 |
-
if args.text:
|
235 |
-
print("Text-guided editing ")
|
236 |
-
output_dir = os.path.join(output_dir, "text")
|
237 |
-
os.makedirs(output_dir, exist_ok = True)
|
238 |
-
save_path = os.path.join(output_dir, "out_text.png")
|
239 |
-
set_string_list[args.tgt_index] = args.tgt_prompt
|
240 |
-
mask_active = torch.zeros_like(mask_list[0])
|
241 |
-
mask_active = mask_union_torch(mask_active, mask_list[args.tgt_index])
|
242 |
-
|
243 |
-
if args.active_mask_list is not None:
|
244 |
-
for midx in args.active_mask_list:
|
245 |
-
mask_active = mask_union_torch(mask_active, mask_list[midx])
|
246 |
-
|
247 |
-
if args.load_edited_mask:
|
248 |
-
mask_list_edited, mask_label_list_edited = load_mask_edit(input_folder)
|
249 |
-
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
250 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
251 |
-
mask_list = mask_list_edited
|
252 |
-
save_path = os.path.join(output_dir, "out_textEdited.png")
|
253 |
-
|
254 |
-
mask_hard = mask_substract_torch(torch.ones_like(mask_list[0]), mask_active)
|
255 |
-
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = args.edge_thickness)
|
256 |
-
mask_hard = mask_substract_torch(mask_hard, mask_soft)
|
257 |
-
|
258 |
-
pipe.inference_with_mask(
|
259 |
-
save_path,
|
260 |
-
orig_image = image_gt,
|
261 |
-
set_string_list = set_string_list,
|
262 |
-
guidance_scale = args.guidance_scale,
|
263 |
-
strength = args.strength,
|
264 |
-
num_imgs = args.num_imgs,
|
265 |
-
mask_hard= mask_hard,
|
266 |
-
mask_soft = mask_soft,
|
267 |
-
mask_list = mask_list,
|
268 |
-
seed = args.seed,
|
269 |
-
num_sampling_steps = args.num_sampling_steps
|
270 |
-
)
|
271 |
-
|
272 |
-
if args.remove:
|
273 |
-
output_dir = os.path.join(output_dir, "remove")
|
274 |
-
save_path = os.path.join(output_dir, "out_remove.png")
|
275 |
-
os.makedirs(output_dir, exist_ok = True)
|
276 |
-
mask_active = torch.zeros_like(mask_list[0])
|
277 |
-
|
278 |
-
if args.load_edited_mask:
|
279 |
-
mask_list_edited, _ = load_mask_edit(input_folder)
|
280 |
-
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
281 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
282 |
-
mask_list = mask_list_edited
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
# generate masks after removing one index, using nearest neighbor algorithm
|
290 |
-
mask_list_processed, mask_remain = process_mask_remove_torch(mask_list, args.tgt_index)
|
291 |
-
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
|
292 |
-
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_removed.png"))
|
293 |
-
check_cover_all_torch(*mask_list_processed)
|
294 |
-
mask_active = mask_union_torch(mask_active, mask_remain)
|
295 |
-
|
296 |
-
if args.active_mask_list is not None:
|
297 |
-
for midx in args.active_mask_list:
|
298 |
-
mask_active = mask_union_torch(mask_active, mask_list[midx])
|
299 |
-
|
300 |
-
mask_hard = 1 - mask_active
|
301 |
-
mask_soft = create_outer_edge_mask_torch(mask_remain, edge_thickness = args.edge_thickness)
|
302 |
-
mask_hard = mask_substract_torch(mask_hard, mask_soft)
|
303 |
-
|
304 |
-
pipe.inference_with_mask(
|
305 |
-
save_path,
|
306 |
-
orig_image = image_gt,
|
307 |
-
guidance_scale = args.guidance_scale,
|
308 |
-
strength = args.strength,
|
309 |
-
num_imgs = args.num_imgs,
|
310 |
-
mask_hard= mask_hard,
|
311 |
-
mask_soft = mask_soft,
|
312 |
-
mask_list = mask_list_processed,
|
313 |
-
seed = args.seed,
|
314 |
-
num_sampling_steps = args.num_sampling_steps
|
315 |
-
)
|
316 |
-
|
317 |
-
if args.image:
|
318 |
-
output_dir = os.path.join(output_dir, "image")
|
319 |
-
save_path = os.path.join(output_dir, "out_image.png")
|
320 |
-
os.makedirs(output_dir, exist_ok = True)
|
321 |
-
mask_active = torch.zeros_like(mask_list[0])
|
322 |
-
|
323 |
-
if None not in (args.tgt_name, args.src_index, args.tgt_index):
|
324 |
-
if args.tgt_name == args.name:
|
325 |
-
set_string_list_tgt = set_string_list
|
326 |
-
set_string_list_src = set_string_list_2
|
327 |
-
image_tgt = image_gt
|
328 |
-
if args.load_edited_mask:
|
329 |
-
mask_list_edited, _ = load_mask_edit(input_folder)
|
330 |
-
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
331 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
332 |
-
mask_list = mask_list_edited
|
333 |
-
save_path = os.path.join(output_dir, "out_imageEdited.png")
|
334 |
-
mask_list_tgt = mask_list
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
if args.load_edited_mask:
|
341 |
-
mask_list_2_edited, _ = load_mask_edit(input_folder_2)
|
342 |
-
mask_diff = get_mask_difference_torch(mask_list_2_edited, mask_list_2)
|
343 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
344 |
-
mask_list_2 = mask_list_2_edited
|
345 |
-
save_path = os.path.join(output_dir, "out_imageEdited.png")
|
346 |
-
mask_list_tgt = mask_list_2
|
347 |
else:
|
348 |
-
|
349 |
-
|
350 |
-
|
|
|
|
|
|
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
|
|
358 |
|
359 |
pipe.inference_with_mask(
|
360 |
-
save_path,
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
mask_hard
|
366 |
-
mask_soft = mask_soft
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
)
|
371 |
|
372 |
-
if
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
if args.load_edited_mask:
|
379 |
-
mask_list_edited, _ = load_mask_edit(input_folder)
|
380 |
-
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
381 |
-
mask_active = mask_union_torch(mask_active, mask_diff)
|
382 |
-
mask_list = mask_list_edited
|
383 |
-
# save_path = os.path.join(output_dir, "out_moveresizeEdited.png")
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
)
|
397 |
-
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
|
398 |
-
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_move_resize.png"))
|
399 |
-
active_idxs = args.tgt_indices_list
|
400 |
-
|
401 |
-
mask_active = mask_union_torch(mask_active, *[m for midx, m in enumerate(mask_list_processed) if midx in active_idxs])
|
402 |
-
mask_active = mask_union_torch(mask_remain, mask_active)
|
403 |
-
if args.active_mask_list is not None:
|
404 |
-
for midx in args.active_mask_list:
|
405 |
-
mask_active = mask_union_torch(mask_active, mask_list_processed[midx])
|
406 |
-
|
407 |
-
mask_frozen =(1 - mask_active.float())
|
408 |
-
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = args.edge_thickness)
|
409 |
-
mask_hard = mask_substract_torch(mask_frozen, mask_soft)
|
410 |
-
|
411 |
-
check_mask_overlap_torch(mask_hard, mask_soft)
|
412 |
-
|
413 |
-
pipe.inference_with_mask(
|
414 |
-
save_path,
|
415 |
-
strength = args.strength,
|
416 |
-
orig_image = image_gt,
|
417 |
-
guidance_scale = args.guidance_scale,
|
418 |
-
num_sampling_steps = args.num_sampling_steps,
|
419 |
-
num_imgs = args.num_imgs,
|
420 |
-
mask_hard= mask_hard,
|
421 |
-
mask_soft = mask_soft,
|
422 |
-
mask_list = mask_list_processed,
|
423 |
-
seed = args.seed
|
424 |
-
)
|
|
|
9 |
from utils_mask import process_mask_move_torch, process_mask_remove_torch, mask_union_torch, mask_substract_torch, create_outer_edge_mask_torch
|
10 |
from utils_mask import check_mask_overlap_torch, check_cover_all_torch, visualize_mask_list, get_mask_difference_torch, save_mask_list_to_npys
|
11 |
|
12 |
+
def run_main(
|
13 |
+
name="example_tmp",
|
14 |
+
name_2=None,
|
15 |
+
dpm="sd",
|
16 |
+
resolution=512,
|
17 |
+
seed=42,
|
18 |
+
embedding_learning_rate=1e-4,
|
19 |
+
max_emb_train_steps=200,
|
20 |
+
diffusion_model_learning_rate=5e-5,
|
21 |
+
max_diffusion_train_steps=200,
|
22 |
+
train_batch_size=1,
|
23 |
+
gradient_accumulation_steps=1,
|
24 |
+
num_tokens=1,
|
25 |
+
|
26 |
+
load_trained=False ,
|
27 |
+
num_sampling_steps=50,
|
28 |
+
guidance_scale= 3 ,
|
29 |
+
strength=0.8,
|
30 |
+
|
31 |
+
train_full_lora=False ,
|
32 |
+
lora_rank=4,
|
33 |
+
lora_alpha=4,
|
34 |
+
|
35 |
+
prompt_auxin_list = None,
|
36 |
+
prompt_auxin_idx_list= None,
|
37 |
+
|
38 |
+
load_edited_mask=False,
|
39 |
+
load_edited_processed_mask=False,
|
40 |
+
edge_thickness=20,
|
41 |
+
num_imgs= 1 ,
|
42 |
+
active_mask_list = None,
|
43 |
+
tgt_index=None,
|
44 |
+
|
45 |
+
recon=False ,
|
46 |
+
recon_an_item=False,
|
47 |
+
recon_prompt=None,
|
48 |
+
|
49 |
+
text=False,
|
50 |
+
tgt_prompt=None,
|
51 |
+
|
52 |
+
image=False ,
|
53 |
+
src_index=None,
|
54 |
+
tgt_name=None,
|
55 |
+
|
56 |
+
move_resize=False ,
|
57 |
+
tgt_indices_list=None,
|
58 |
+
delta_x_list=None,
|
59 |
+
delta_y_list=None,
|
60 |
+
priority_list=None,
|
61 |
+
force_mask_remain=None,
|
62 |
+
resize_list=None,
|
63 |
+
|
64 |
+
remove=False,
|
65 |
+
load_edited_removemask=False
|
66 |
+
):
|
67 |
+
torch.cuda.manual_seed_all(seed)
|
68 |
+
torch.manual_seed(seed)
|
69 |
+
base_input_folder = "."
|
70 |
+
base_output_folder = "."
|
71 |
+
|
72 |
+
input_folder = os.path.join(base_input_folder, name)
|
73 |
+
|
74 |
+
mask_list, mask_label_list = load_mask(input_folder)
|
75 |
+
assert mask_list[0].shape[0] == resolution, "Segmentation should be done on size {}".format(resolution)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
try:
|
77 |
+
image_gt = load_image(os.path.join(input_folder, "img_{}.png".format(resolution) ), size = resolution)
|
78 |
except:
|
79 |
+
image_gt = load_image(os.path.join(input_folder, "img_{}.jpg".format(resolution) ), size = resolution)
|
80 |
+
|
81 |
+
if image:
|
82 |
+
input_folder_2 = os.path.join(base_input_folder, name_2)
|
83 |
+
mask_list_2, mask_label_list_2 = load_mask(input_folder_2)
|
84 |
+
assert mask_list_2[0].shape[0] == resolution, "Segmentation should be done on size {}".format(resolution)
|
85 |
+
try:
|
86 |
+
image_gt_2 = load_image(os.path.join(input_folder_2, "img_{}.png".format(resolution) ), size = resolution)
|
87 |
+
except:
|
88 |
+
image_gt_2 = load_image(os.path.join(input_folder_2, "img_{}.jpg".format(resolution) ), size = resolution)
|
89 |
+
output_dir = os.path.join(base_output_folder, name + "_" + name_2)
|
90 |
+
os.makedirs(output_dir, exist_ok = True)
|
91 |
else:
|
92 |
+
output_dir = os.path.join(base_output_folder, name)
|
93 |
+
os.makedirs(output_dir, exist_ok = True)
|
94 |
+
|
95 |
+
if dpm == "sd":
|
96 |
+
if image:
|
97 |
+
pipe = DEditSDPipeline(mask_list, mask_label_list, mask_list_2, mask_label_list_2, resolution = resolution, num_tokens = num_tokens)
|
98 |
+
else:
|
99 |
+
pipe = DEditSDPipeline(mask_list, mask_label_list, resolution = resolution, num_tokens = num_tokens)
|
100 |
+
|
101 |
+
elif dpm == "sdxl":
|
102 |
+
if image:
|
103 |
+
pipe = DEditSDXLPipeline(mask_list, mask_label_list, mask_list_2, mask_label_list_2, resolution = resolution, num_tokens = num_tokens)
|
104 |
+
else:
|
105 |
+
pipe = DEditSDXLPipeline(mask_list, mask_label_list, resolution = resolution, num_tokens = num_tokens)
|
106 |
+
|
107 |
+
else:
|
108 |
+
raise NotImplementedError
|
109 |
+
|
110 |
+
set_string_list = pipe.set_string_list
|
111 |
+
if prompt_auxin_list is not None:
|
112 |
+
for auxin_idx, auxin_prompt in zip(prompt_auxin_idx_list, prompt_auxin_list):
|
113 |
+
set_string_list[auxin_idx] = auxin_prompt.replace("*", set_string_list[auxin_idx] )
|
114 |
+
print(set_string_list)
|
115 |
+
|
116 |
+
if image:
|
117 |
+
set_string_list_2 = pipe.set_string_list_2
|
118 |
+
print(set_string_list_2)
|
119 |
+
|
120 |
+
if load_trained:
|
121 |
+
unet_save_path = os.path.join(output_dir, "unet.pt")
|
122 |
+
unet_state_dict = torch.load(unet_save_path)
|
123 |
+
text_encoder1_save_path = os.path.join(output_dir, "text_encoder1.pt")
|
124 |
+
text_encoder1_state_dict = torch.load(text_encoder1_save_path)
|
125 |
+
if dpm == "sdxl":
|
126 |
+
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
|
127 |
+
text_encoder2_state_dict = torch.load(text_encoder2_save_path)
|
128 |
+
|
129 |
+
if 'lora' in ''.join(unet_state_dict.keys()):
|
130 |
+
unet_lora_config = LoraConfig(
|
131 |
+
r=lora_rank,
|
132 |
+
lora_alpha=lora_alpha,
|
133 |
+
init_lora_weights="gaussian",
|
134 |
+
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
135 |
+
)
|
136 |
+
pipe.unet.add_adapter(unet_lora_config)
|
137 |
|
138 |
+
pipe.unet.load_state_dict(unet_state_dict)
|
139 |
+
pipe.text_encoder.load_state_dict(text_encoder1_state_dict)
|
140 |
+
if dpm == "sdxl":
|
141 |
+
pipe.text_encoder_2.load_state_dict(text_encoder2_state_dict)
|
142 |
else:
|
143 |
+
if image:
|
144 |
+
pipe.mask_list = [m.cuda() for m in pipe.mask_list]
|
145 |
+
pipe.mask_list_2 = [m.cuda() for m in pipe.mask_list_2]
|
146 |
+
pipe.train_emb_2imgs(
|
147 |
+
image_gt,
|
148 |
+
image_gt_2,
|
149 |
+
set_string_list,
|
150 |
+
set_string_list_2,
|
151 |
+
gradient_accumulation_steps = gradient_accumulation_steps,
|
152 |
+
embedding_learning_rate = embedding_learning_rate,
|
153 |
+
max_emb_train_steps = max_emb_train_steps,
|
154 |
+
train_batch_size = train_batch_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
)
|
156 |
+
|
157 |
+
pipe.train_model_2imgs(
|
158 |
+
image_gt,
|
159 |
+
image_gt_2,
|
160 |
+
set_string_list,
|
161 |
+
set_string_list_2,
|
162 |
+
gradient_accumulation_steps = gradient_accumulation_steps,
|
163 |
+
max_diffusion_train_steps = max_diffusion_train_steps,
|
164 |
+
diffusion_model_learning_rate = diffusion_model_learning_rate ,
|
165 |
+
train_batch_size =train_batch_size,
|
166 |
+
train_full_lora = train_full_lora,
|
167 |
+
lora_rank = lora_rank,
|
168 |
+
lora_alpha = lora_alpha
|
169 |
+
)
|
170 |
+
|
171 |
+
else:
|
172 |
+
pipe.mask_list = [m.cuda() for m in pipe.mask_list]
|
173 |
+
pipe.train_emb(
|
174 |
+
image_gt,
|
175 |
+
set_string_list,
|
176 |
+
gradient_accumulation_steps = gradient_accumulation_steps,
|
177 |
+
embedding_learning_rate = embedding_learning_rate,
|
178 |
+
max_emb_train_steps = max_emb_train_steps,
|
179 |
+
train_batch_size = train_batch_size,
|
180 |
+
)
|
181 |
+
|
182 |
+
pipe.train_model(
|
183 |
+
image_gt,
|
184 |
+
set_string_list,
|
185 |
+
gradient_accumulation_steps = gradient_accumulation_steps,
|
186 |
+
max_diffusion_train_steps = max_diffusion_train_steps,
|
187 |
+
diffusion_model_learning_rate = diffusion_model_learning_rate ,
|
188 |
+
train_batch_size = train_batch_size,
|
189 |
+
train_full_lora = train_full_lora,
|
190 |
+
lora_rank = lora_rank,
|
191 |
+
lora_alpha = lora_alpha
|
192 |
+
)
|
193 |
+
|
194 |
|
195 |
+
unet_save_path = os.path.join(output_dir, "unet.pt")
|
196 |
+
torch.save(pipe.unet.state_dict(),unet_save_path )
|
197 |
+
text_encoder1_save_path = os.path.join(output_dir, "text_encoder1.pt")
|
198 |
+
torch.save(pipe.text_encoder.state_dict(), text_encoder1_save_path)
|
199 |
+
if dpm == "sdxl":
|
200 |
+
text_encoder2_save_path = os.path.join(output_dir, "text_encoder2.pt")
|
201 |
+
torch.save(pipe.text_encoder_2.state_dict(), text_encoder2_save_path )
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
|
204 |
+
if recon:
|
205 |
+
output_dir = os.path.join(output_dir, "recon")
|
206 |
+
os.makedirs(output_dir, exist_ok = True)
|
207 |
+
if recon_an_item:
|
208 |
+
mask_list = [torch.from_numpy(np.ones_like(mask_list[0].numpy()))]
|
209 |
+
tgt_string = set_string_list[tgt_index]
|
210 |
+
tgt_string = recon_prompt.replace("*", tgt_string)
|
211 |
+
set_string_list = [tgt_string]
|
212 |
+
print(set_string_list)
|
213 |
+
save_path = os.path.join(output_dir, "out_recon.png")
|
214 |
+
x_np = pipe.inference_with_mask(
|
215 |
+
save_path,
|
216 |
+
guidance_scale = guidance_scale,
|
217 |
+
num_sampling_steps = num_sampling_steps,
|
218 |
+
seed = seed,
|
219 |
+
num_imgs = num_imgs,
|
220 |
+
set_string_list = set_string_list,
|
221 |
+
mask_list = mask_list
|
222 |
)
|
223 |
+
|
224 |
+
if text:
|
225 |
+
print("Text-guided editing ")
|
226 |
+
output_dir = os.path.join(output_dir, "text")
|
227 |
+
os.makedirs(output_dir, exist_ok = True)
|
228 |
+
save_path = os.path.join(output_dir, "out_text.png")
|
229 |
+
set_string_list[tgt_index] = tgt_prompt
|
230 |
+
mask_active = torch.zeros_like(mask_list[0])
|
231 |
+
mask_active = mask_union_torch(mask_active, mask_list[tgt_index])
|
232 |
+
|
233 |
+
if active_mask_list is not None:
|
234 |
+
for midx in active_mask_list:
|
235 |
+
mask_active = mask_union_torch(mask_active, mask_list[midx])
|
236 |
+
|
237 |
+
if load_edited_mask:
|
238 |
+
mask_list_edited, mask_label_list_edited = load_mask_edit(input_folder)
|
239 |
+
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
240 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
241 |
+
mask_list = mask_list_edited
|
242 |
+
save_path = os.path.join(output_dir, "out_textEdited.png")
|
243 |
+
|
244 |
+
mask_hard = mask_substract_torch(torch.ones_like(mask_list[0]), mask_active)
|
245 |
+
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = edge_thickness)
|
246 |
+
mask_hard = mask_substract_torch(mask_hard, mask_soft)
|
247 |
|
248 |
+
pipe.inference_with_mask(
|
249 |
+
save_path,
|
250 |
+
orig_image = image_gt,
|
251 |
+
set_string_list = set_string_list,
|
252 |
+
guidance_scale = guidance_scale,
|
253 |
+
strength = strength,
|
254 |
+
num_imgs = num_imgs,
|
255 |
+
mask_hard= mask_hard,
|
256 |
+
mask_soft = mask_soft,
|
257 |
+
mask_list = mask_list,
|
258 |
+
seed = seed,
|
259 |
+
num_sampling_steps = num_sampling_steps
|
260 |
)
|
261 |
|
262 |
+
if remove:
|
263 |
+
output_dir = os.path.join(output_dir, "remove")
|
264 |
+
save_path = os.path.join(output_dir, "out_remove.png")
|
265 |
+
os.makedirs(output_dir, exist_ok = True)
|
266 |
+
mask_active = torch.zeros_like(mask_list[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
if load_edited_mask:
|
269 |
+
mask_list_edited, _ = load_mask_edit(input_folder)
|
270 |
+
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
271 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
272 |
+
mask_list = mask_list_edited
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
+
if load_edited_processed_mask:
|
275 |
+
# manually edit or draw masks after removing one index, then load
|
276 |
+
mask_list_processed, _ = load_mask_edit(output_dir)
|
277 |
+
mask_remain = get_mask_difference_torch(mask_list_processed, mask_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
else:
|
279 |
+
# generate masks after removing one index, using nearest neighbor algorithm
|
280 |
+
mask_list_processed, mask_remain = process_mask_remove_torch(mask_list, tgt_index)
|
281 |
+
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
|
282 |
+
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_removed.png"))
|
283 |
+
check_cover_all_torch(*mask_list_processed)
|
284 |
+
mask_active = mask_union_torch(mask_active, mask_remain)
|
285 |
|
286 |
+
if active_mask_list is not None:
|
287 |
+
for midx in active_mask_list:
|
288 |
+
mask_active = mask_union_torch(mask_active, mask_list[midx])
|
289 |
+
|
290 |
+
mask_hard = 1 - mask_active
|
291 |
+
mask_soft = create_outer_edge_mask_torch(mask_remain, edge_thickness = edge_thickness)
|
292 |
+
mask_hard = mask_substract_torch(mask_hard, mask_soft)
|
293 |
|
294 |
pipe.inference_with_mask(
|
295 |
+
save_path,
|
296 |
+
orig_image = image_gt,
|
297 |
+
guidance_scale = guidance_scale,
|
298 |
+
strength = strength,
|
299 |
+
num_imgs = num_imgs,
|
300 |
+
mask_hard= mask_hard,
|
301 |
+
mask_soft = mask_soft,
|
302 |
+
mask_list = mask_list_processed,
|
303 |
+
seed = seed,
|
304 |
+
num_sampling_steps = num_sampling_steps
|
305 |
)
|
306 |
|
307 |
+
if image:
|
308 |
+
output_dir = os.path.join(output_dir, "image")
|
309 |
+
save_path = os.path.join(output_dir, "out_image.png")
|
310 |
+
os.makedirs(output_dir, exist_ok = True)
|
311 |
+
mask_active = torch.zeros_like(mask_list[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
+
if None not in (tgt_name, src_index, tgt_index):
|
314 |
+
if tgt_name == name:
|
315 |
+
set_string_list_tgt = set_string_list
|
316 |
+
set_string_list_src = set_string_list_2
|
317 |
+
image_tgt = image_gt
|
318 |
+
if load_edited_mask:
|
319 |
+
mask_list_edited, _ = load_mask_edit(input_folder)
|
320 |
+
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
321 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
322 |
+
mask_list = mask_list_edited
|
323 |
+
save_path = os.path.join(output_dir, "out_imageEdited.png")
|
324 |
+
mask_list_tgt = mask_list
|
325 |
+
|
326 |
+
elif tgt_name == name_2:
|
327 |
+
set_string_list_tgt = set_string_list_2
|
328 |
+
set_string_list_src = set_string_list
|
329 |
+
image_tgt = image_gt_2
|
330 |
+
if load_edited_mask:
|
331 |
+
mask_list_2_edited, _ = load_mask_edit(input_folder_2)
|
332 |
+
mask_diff = get_mask_difference_torch(mask_list_2_edited, mask_list_2)
|
333 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
334 |
+
mask_list_2 = mask_list_2_edited
|
335 |
+
save_path = os.path.join(output_dir, "out_imageEdited.png")
|
336 |
+
mask_list_tgt = mask_list_2
|
337 |
+
else:
|
338 |
+
exit("tgt_name should be either name or name_2")
|
339 |
+
|
340 |
+
set_string_list_tgt[tgt_index] = set_string_list_src[src_index]
|
341 |
+
|
342 |
+
mask_active = mask_list_tgt[tgt_index]
|
343 |
+
mask_frozen = (1-mask_active.float()).to(mask_active.device)
|
344 |
+
mask_soft = create_outer_edge_mask_torch(mask_active.cpu(), edge_thickness = edge_thickness)
|
345 |
+
mask_hard = mask_substract_torch(mask_frozen.cpu(), mask_soft.cpu())
|
346 |
+
|
347 |
+
mask_list_tgt = [m.cuda() for m in mask_list_tgt]
|
348 |
+
|
349 |
+
pipe.inference_with_mask(
|
350 |
+
save_path,
|
351 |
+
set_string_list = set_string_list_tgt,
|
352 |
+
mask_list = mask_list_tgt,
|
353 |
+
guidance_scale = guidance_scale,
|
354 |
+
num_sampling_steps = num_sampling_steps,
|
355 |
+
mask_hard = mask_hard.cuda(),
|
356 |
+
mask_soft = mask_soft.cuda(),
|
357 |
+
num_imgs = num_imgs,
|
358 |
+
orig_image = image_tgt,
|
359 |
+
strength = strength,
|
360 |
+
)
|
361 |
+
|
362 |
+
if move_resize:
|
363 |
+
output_dir = os.path.join(output_dir, "move_resize")
|
364 |
+
os.makedirs(output_dir, exist_ok = True)
|
365 |
+
save_path = os.path.join(output_dir, "out_moveresize.png")
|
366 |
+
mask_active = torch.zeros_like(mask_list[0])
|
367 |
+
|
368 |
+
if load_edited_mask:
|
369 |
+
mask_list_edited, _ = load_mask_edit(input_folder)
|
370 |
+
mask_diff = get_mask_difference_torch(mask_list_edited, mask_list)
|
371 |
+
mask_active = mask_union_torch(mask_active, mask_diff)
|
372 |
+
mask_list = mask_list_edited
|
373 |
+
# save_path = os.path.join(output_dir, "out_moveresizeEdited.png")
|
374 |
+
|
375 |
+
if load_edited_processed_mask:
|
376 |
+
mask_list_processed, _ = load_mask_edit(output_dir)
|
377 |
+
mask_remain = get_mask_difference_torch(mask_list_processed, mask_list)
|
378 |
+
else:
|
379 |
+
mask_list_processed, mask_remain = process_mask_move_torch(
|
380 |
+
mask_list,
|
381 |
+
tgt_indices_list,
|
382 |
+
delta_x_list,
|
383 |
+
delta_y_list, priority_list,
|
384 |
+
force_mask_remain = force_mask_remain,
|
385 |
+
resize_list = resize_list
|
386 |
+
)
|
387 |
+
save_mask_list_to_npys(output_dir, mask_list_processed, mask_label_list, name = "mask")
|
388 |
+
visualize_mask_list(mask_list_processed, os.path.join(output_dir, "seg_move_resize.png"))
|
389 |
+
active_idxs = tgt_indices_list
|
390 |
+
|
391 |
+
mask_active = mask_union_torch(mask_active, *[m for midx, m in enumerate(mask_list_processed) if midx in active_idxs])
|
392 |
+
mask_active = mask_union_torch(mask_remain, mask_active)
|
393 |
+
if active_mask_list is not None:
|
394 |
+
for midx in active_mask_list:
|
395 |
+
mask_active = mask_union_torch(mask_active, mask_list_processed[midx])
|
396 |
+
|
397 |
+
mask_frozen =(1 - mask_active.float())
|
398 |
+
mask_soft = create_outer_edge_mask_torch(mask_active, edge_thickness = edge_thickness)
|
399 |
+
mask_hard = mask_substract_torch(mask_frozen, mask_soft)
|
400 |
+
|
401 |
+
check_mask_overlap_torch(mask_hard, mask_soft)
|
402 |
+
|
403 |
+
pipe.inference_with_mask(
|
404 |
+
save_path,
|
405 |
+
strength = strength,
|
406 |
+
orig_image = image_gt,
|
407 |
+
guidance_scale = guidance_scale,
|
408 |
+
num_sampling_steps = num_sampling_steps,
|
409 |
+
num_imgs = num_imgs,
|
410 |
+
mask_hard= mask_hard,
|
411 |
+
mask_soft = mask_soft,
|
412 |
+
mask_list = mask_list_processed,
|
413 |
+
seed = seed
|
414 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline_dedit_sd.py
CHANGED
@@ -27,11 +27,11 @@ class DEditSDPipeline:
|
|
27 |
mask_label_list,
|
28 |
mask_list_2 = None,
|
29 |
mask_label_list_2 = None,
|
30 |
-
resolution =
|
31 |
num_tokens = 1
|
32 |
):
|
33 |
super().__init__()
|
34 |
-
model_id = "
|
35 |
self.model_id = model_id
|
36 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", use_fast=False)
|
37 |
text_encoder_cls_one = import_model_class_from_model_name_or_path(model_id, subfolder = "text_encoder")
|
@@ -810,4 +810,5 @@ class DEditSDPipeline:
|
|
810 |
seed = seed
|
811 |
)
|
812 |
save_images(x0, save_path)
|
813 |
-
|
|
|
|
27 |
mask_label_list,
|
28 |
mask_list_2 = None,
|
29 |
mask_label_list_2 = None,
|
30 |
+
resolution = 512,
|
31 |
num_tokens = 1
|
32 |
):
|
33 |
super().__init__()
|
34 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
35 |
self.model_id = model_id
|
36 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", use_fast=False)
|
37 |
text_encoder_cls_one = import_model_class_from_model_name_or_path(model_id, subfolder = "text_encoder")
|
|
|
810 |
seed = seed
|
811 |
)
|
812 |
save_images(x0, save_path)
|
813 |
+
# from PIL import Image
|
814 |
+
# return Image.open("example_tmp/text/out_text_0.png")
|
segment.py
CHANGED
@@ -102,7 +102,8 @@ def run_segmentation(image, name="example_tmp", size = 512, noseg=False):
|
|
102 |
# image = load_image(os.path.join(input_folder, "img.png" ), size = size)
|
103 |
# except:
|
104 |
# image = load_image(os.path.join(input_folder, "img.jpg" ), size = size)
|
105 |
-
|
|
|
106 |
os.makedirs(name, exist_ok=True)
|
107 |
image.save(os.path.join(name,"img_{}.png".format(size)))
|
108 |
inputs = processor(image, return_tensors="pt")
|
|
|
102 |
# image = load_image(os.path.join(input_folder, "img.png" ), size = size)
|
103 |
# except:
|
104 |
# image = load_image(os.path.join(input_folder, "img.jpg" ), size = size)
|
105 |
+
image =Image.fromarray(image)
|
106 |
+
image = image.resize((size, size))
|
107 |
os.makedirs(name, exist_ok=True)
|
108 |
image.save(os.path.join(name,"img_{}.png".format(size)))
|
109 |
inputs = processor(image, return_tensors="pt")
|