File size: 15,894 Bytes
34b628f
 
e0de939
34b628f
 
 
 
e0de939
34b628f
29dc892
69b2b0d
45b16b4
34b628f
e0de939
 
 
 
 
34b628f
e0de939
 
 
 
9015bd1
e0de939
 
 
34b628f
 
e0de939
34b628f
b111852
e0de939
 
85f2c6e
 
 
 
7ac68e0
29dc892
 
 
 
 
 
 
 
 
 
 
 
 
 
34b628f
29dc892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34b628f
29dc892
 
 
 
 
 
 
 
 
 
 
 
 
34b628f
29dc892
34b628f
 
69b2b0d
f0ba2c6
b1b84dc
29dc892
34b628f
29dc892
 
 
 
 
 
 
 
34b628f
29dc892
e0de939
29dc892
34b628f
 
29dc892
34b628f
 
 
 
29dc892
34b628f
7ac68e0
e0de939
 
29dc892
 
 
f0ba2c6
29dc892
 
 
 
 
 
 
 
 
34b628f
29dc892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8142c
29dc892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ba2c6
 
 
29dc892
 
7c06677
29dc892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34b628f
 
29dc892
 
 
 
34b628f
29dc892
 
 
9b565e0
29dc892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b565e0
29dc892
f0ba2c6
29dc892
 
 
 
 
 
 
 
 
 
 
 
 
 
34b628f
 
29dc892
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import gradio as gr
import torch
from diffusers import AutoencoderKL, FluxTransformer2DModel
from diffusers.utils import load_image
from controlnet_flux import FluxControlNetModel
from transformer_flux import FluxTransformer2DModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
from transformers import T5EncoderModel, CLIPTextModel
from PIL import Image, ImageDraw
import numpy as np
import spaces
from huggingface_hub import hf_hub_download

# Load fp8
#transformer = FluxTransformer2DModel.from_single_file("https://huggingface.co/Kijai/flux-fp8/blob/main/flux1-dev-fp8.safetensors", torch_dtype=torch.bfloat16)
#quantize(transformer, weights=qfloat8)
#freeze(transformer)

# Load models
#controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", torch_dtype=torch.bfloat16)
#quantize(controlnet, weights=qfloat8)
#freeze(controlnet)

text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.bfloat16)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)

pipe = FluxControlNetInpaintingPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    text_encoder_2=None,
    torch_dtype=torch.bfloat16
)
pipe.text_encoder_2 = text_encoder_2

repo_name = "ByteDance/Hyper-SD"
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors"
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
pipe.fuse_lora(lora_scale=0.125)
pipe.to("cuda")
def can_expand(source_width, source_height, target_width, target_height, alignment):
    if alignment in ("Left", "Right") and source_width >= target_width:
        return False
    if alignment in ("Top", "Bottom") and source_height >= target_height:
        return False
    return True

def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    target_size = (width, height)

    # Calculate the scaling factor to fit the image within the target size
    scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
    new_width = int(image.width * scale_factor)
    new_height = int(image.height * scale_factor)
    
    # Resize the source image to fit within target size
    source = image.resize((new_width, new_height), Image.LANCZOS)

    # Apply resize option using percentages
    if resize_option == "Full":
        resize_percentage = 100
    elif resize_option == "50%":
        resize_percentage = 50
    elif resize_option == "33%":
        resize_percentage = 33
    elif resize_option == "25%":
        resize_percentage = 25
    else:  # Custom
        resize_percentage = custom_resize_percentage

    # Calculate new dimensions based on percentage
    resize_factor = resize_percentage / 100
    new_width = int(source.width * resize_factor)
    new_height = int(source.height * resize_factor)

    # Ensure minimum size of 64 pixels
    new_width = max(new_width, 64)
    new_height = max(new_height, 64)

    # Resize the image
    source = source.resize((new_width, new_height), Image.LANCZOS)

    # Calculate the overlap in pixels based on the percentage
    overlap_x = int(new_width * (overlap_percentage / 100))
    overlap_y = int(new_height * (overlap_percentage / 100))

    # Ensure minimum overlap of 1 pixel
    overlap_x = max(overlap_x, 1)
    overlap_y = max(overlap_y, 1)

    # Calculate margins based on alignment
    if alignment == "Middle":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Left":
        margin_x = 0
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Right":
        margin_x = target_size[0] - new_width
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Top":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = 0
    elif alignment == "Bottom":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = target_size[1] - new_height

    # Adjust margins to eliminate gaps
    margin_x = max(0, min(margin_x, target_size[0] - new_width))
    margin_y = max(0, min(margin_y, target_size[1] - new_height))

    # Create a new background image and paste the resized source image
    background = Image.new('RGB', target_size, (255, 255, 255))
    background.paste(source, (margin_x, margin_y))

    # Create the mask
    mask = Image.new('L', target_size, 255)
    mask_draw = ImageDraw.Draw(mask)

    # Calculate overlap areas
    white_gaps_patch = 2

    left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
    right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
    top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
    bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
    
    if alignment == "Left":
        left_overlap = margin_x + overlap_x if overlap_left else margin_x
    elif alignment == "Right":
        right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
    elif alignment == "Top":
        top_overlap = margin_y + overlap_y if overlap_top else margin_y
    elif alignment == "Bottom":
        bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height

    # Draw the mask
    mask_draw.rectangle([
        (left_overlap, top_overlap),
        (right_overlap, bottom_overlap)
    ], fill=0)

    return background, mask

@spaces.GPU
def inpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom, progress=gr.Progress(track_tqdm=True)):
    
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
    
    if not can_expand(background.width, background.height, width, height, alignment):
        alignment = "Middle"

    cnet_image = background.copy()
    cnet_image.paste(0, (0, 0), mask)

    final_prompt = f"{prompt_input} , high quality, 4k"

    generator = torch.Generator(device="cuda").manual_seed(42)

    result = pipe(
        prompt=final_prompt,
        height=height,
        width=width,
        control_image=cnet_image,
        control_mask=mask,
        num_inference_steps=num_inference_steps,
        generator=generator,
        controlnet_conditioning_scale=0.9,
        guidance_scale=3.5,
        negative_prompt="",
        true_guidance_scale=3.5,
    ).images[0]
   
    result = result.convert("RGBA")
    cnet_image.paste(result, (0, 0), mask)

    return cnet_image, background

def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
    
    preview = background.copy().convert('RGBA')
    red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64))
    red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
    red_mask.paste(red_overlay, (0, 0), mask)
    preview = Image.alpha_composite(preview, red_mask)
    
    return preview

def clear_result():
    return gr.update(value=None)

def preload_presets(target_ratio, ui_width, ui_height):
    if target_ratio == "9:16":
        return 720, 1280, gr.update()
    elif target_ratio == "16:9":
        return 1280, 720, gr.update()
    elif target_ratio == "1:1":
        return 1024, 1024, gr.update()
    elif target_ratio == "Custom":
        return ui_width, ui_height, gr.update(open=True)

def select_the_right_preset(user_width, user_height):
    if user_width == 720 and user_height == 1280:
        return "9:16"
    elif user_width == 1280 and user_height == 720:
        return "16:9"
    elif user_width == 1024 and user_height == 1024:
        return "1:1"
    else:
        return "Custom"

def toggle_custom_resize_slider(resize_option):
    return gr.update(visible=(resize_option == "Custom"))

def update_history(new_image, history):
    if history is None:
        history = []
    history.insert(0, new_image)
    return history

css = """
.gradio-container {
    width: 1200px !important;
}
"""

title = """<h1 align="center">FLUX Image Outpaint</h1>
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
<div align="center">Using <a href="https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha" target="_blank"><code>FLUX.1-dev-Controlnet-Inpainting-Beta</code></a></div>
"""

with gr.Blocks(css=css) as demo:
    with gr.Column():
        gr.HTML(title)

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    type="pil",
                    label="Input Image"
                )

                with gr.Row():
                    with gr.Column(scale=2):
                        prompt_input = gr.Textbox(label="Prompt (Optional)")
                    with gr.Column(scale=1):
                        run_button = gr.Button("Generate")

                with gr.Row():
                    target_ratio = gr.Radio(
                        label="Expected Ratio",
                        choices=["9:16", "16:9", "1:1", "Custom"],
                        value="9:16",
                        scale=2
                    )
                    
                    alignment_dropdown = gr.Dropdown(
                        choices=["Middle", "Left", "Right", "Top", "Bottom"],
                        value="Middle",
                        label="Alignment"
                    )

                with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
                    with gr.Column():
                        with gr.Row():
                            width_slider = gr.Slider(
                                label="Target Width",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=720,
                            )
                            height_slider = gr.Slider(
                                label="Target Height",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=1280,
                            )
                        
                        num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
                        with gr.Group():
                            overlap_percentage = gr.Slider(
                                label="Mask overlap (%)",
                                minimum=1,
                                maximum=50,
                                value=10,
                                step=1
                            )
                            with gr.Row():
                                overlap_top = gr.Checkbox(label="Overlap Top", value=True)
                                overlap_right = gr.Checkbox(label="Overlap Right", value=True)
                            with gr.Row():
                                overlap_left = gr.Checkbox(label="Overlap Left", value=True)
                                overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
                        with gr.Row():
                            resize_option = gr.Radio(
                                label="Resize input image",
                                choices=["Full", "50%", "33%", "25%", "Custom"],
                                value="Full"
                            )
                            custom_resize_percentage = gr.Slider(
                                label="Custom resize (%)",
                                minimum=1,
                                maximum=100,
                                step=1,
                                value=50,
                                visible=False
                            )
                        
                        with gr.Column():
                            preview_button = gr.Button("Preview alignment and mask")
                            
            with gr.Column():
                result = gr.Image(
                    interactive=False,
                    label="Generated Image",
                )
                use_as_input_button = gr.Button("Use as Input Image", visible=False)
                with gr.Accordion("History and Mask", open=False):
                    history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
                    preview_image = gr.Image(label="Mask preview")

    def use_output_as_input(output_image):
        return output_image

    use_as_input_button.click(
        fn=use_output_as_input,
        inputs=[result],
        outputs=[input_image]
    )
    
    target_ratio.change(
        fn=preload_presets,
        inputs=[target_ratio, width_slider, height_slider],
        outputs=[width_slider, height_slider, settings_panel],
        queue=False
    )

    width_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )

    height_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )

    resize_option.change(
        fn=toggle_custom_resize_slider,
        inputs=[resize_option],
        outputs=[custom_resize_percentage],
        queue=False
    )
    
    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=inpaint,
        inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
                resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
                overlap_left, overlap_right, overlap_top, overlap_bottom],
        outputs=[result, preview_image],
    ).then(
        fn=lambda x, history: update_history(x[1], history),
        inputs=[result, history_gallery],
        outputs=history_gallery,
    ).then(
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=use_as_input_button,
    )

    prompt_input.submit(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=inpaint,
        inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
                overlap_left, overlap_right, overlap_top, overlap_bottom],
        outputs=[result, preview_image],
    ).then(
        fn=lambda x, history: update_history(x, history),
        inputs=[result, history_gallery],
        outputs=history_gallery,
    ).then(
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=use_as_input_button,
    )

    preview_button.click(
        fn=preview_image_and_mask,
        inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
                overlap_left, overlap_right, overlap_top, overlap_bottom],
        outputs=preview_image,
        queue=False
    )

demo.queue(max_size=12).launch(share=False)