File size: 17,201 Bytes
824afbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
import math
from dataclasses import dataclass
from typing import Union, Tuple, Literal
import torch as T
import torch.nn as nn
from torch.nn.utils.parametrizations import weight_norm
from utils import load_ckpt
from utils.interp import print_colored
from utils import si_module, get_activation
# Adapted from https://github.com/facebookresearch/AudioDec
def Conv1d1x1(in_channels, out_channels, bias=True):
return nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=bias)
class NonCausalConv1d(nn.Module):
"""1D noncausal convolution w/ 2-sides padding."""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=-1,
dilation=1,
groups=1,
bias=True):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
if padding < 0:
padding = (kernel_size - 1) // 2 * dilation
self.dilation = dilation
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
def forward(self, x):
"""
Args:
x (Tensor): Float tensor variable with the shape (B, C, T).
Returns:
Tensor: Float tensor variable with the shape (B, C, T).
"""
x = self.conv(x)
return x
class NonCausalConvTranspose1d(nn.Module):
"""1D noncausal transpose convolution."""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding=-1,
output_padding=-1,
groups=1,
bias=True,
):
super().__init__()
if padding < 0:
padding = (stride+1) // 2
if output_padding < 0:
output_padding = 1 if stride % 2 else 0
self.deconv = nn.ConvTranspose1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
bias=bias,
)
def forward(self, x):
"""
Args:
x (Tensor): Float tensor variable with the shape (B, C, T).
Returns:
Tensor: Float tensor variable with the shape (B, C', T').
"""
x = self.deconv(x)
return x
class CausalConv1d(NonCausalConv1d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True
):
super(CausalConv1d, self).__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
dilation=dilation,
groups=groups,
bias=bias,
)
self.stride = stride
self.pad_length = (kernel_size - 1) * dilation
def forward(self, x):
pad = nn.ConstantPad1d((self.pad_length, 0), 0.0)
x = pad(x)
return self.conv(x)
class CausalConvTranspose1d(NonCausalConvTranspose1d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
bias=True,
pad_buffer=None,
):
super(CausalConvTranspose1d, self).__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
output_padding=0,
bias=bias,
)
self.stride = stride
self.pad_length = (math.ceil(kernel_size/stride) - 1)
if pad_buffer is None:
pad_buffer = T.zeros(1, in_channels, self.pad_length)
self.register_buffer("pad_buffer", pad_buffer)
def forward(self, x):
pad = nn.ReplicationPad1d((self.pad_length, 0))
x = pad(x)
return self.deconv(x)[:, :, self.stride : -self.stride]
def inference(self, x):
x = T.cat((self.pad_buffer, x), -1)
self.pad_buffer = x[:, :, -self.pad_length:]
return self.deconv(x)[:, :, self.stride : -self.stride]
def reset_buffer(self):
self.pad_buffer.zero_()
class NonCausalResUnit(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=7,
dilation=1,
bias=False,
):
super().__init__()
self.activation = nn.ELU()
self.conv1 = NonCausalConv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
dilation=dilation,
bias=bias,
)
self.conv2 = Conv1d1x1(out_channels, out_channels, bias)
def forward(self, x):
y = self.conv1(self.activation(x))
y = self.conv2(self.activation(y))
return x + y
class CausalResUnit(NonCausalResUnit):
def __init__(
self,
in_channels,
out_channels,
kernel_size=7,
dilation=1,
bias=False,
):
super(CausalResUnit, self).__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
dilation=dilation,
bias=bias,
)
self.conv1 = CausalConv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
dilation=dilation,
bias=bias,
)
def inference(self, x):
y = self.conv1.inference(self.activation(x))
y = self.conv2(self.activation(y))
return x + y
class ResNetBlock(nn.Module):
def __init__(self,
in_channels,
out_channels,
stride,
kernel_size=7,
dilations=(1, 3, 9),
bias=True,
mode='encoder',
):
super().__init__()
assert mode in ('encoder', 'decoder'), f"Mode ({mode}) is not supported!"
self.mode = mode
self.stride = stride
ConvUnit = CausalConv1d if mode == 'encoder' else CausalConvTranspose1d
res_channels = in_channels if mode == 'encoder' else out_channels
res_units = [CausalResUnit(
res_channels,
res_channels,
kernel_size=kernel_size,
dilation=dilation,
) for dilation in dilations]
if in_channels == out_channels:
if mode == 'encoder':
self.pool = nn.AvgPool1d(kernel_size=stride, stride=stride)
if mode == 'decoder':
self.upsample = nn.Upsample(scale_factor=stride, mode='nearest')
conv_unit = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
bias=bias,
) if in_channels != out_channels else nn.Identity()
else:
conv_unit = ConvUnit(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(2 * stride),
stride=stride,
bias=bias,
)
if mode == 'encoder':
if in_channels == out_channels:
self.res_block = nn.Sequential(*res_units, self.pool, conv_unit)
else:
self.res_block = nn.Sequential(*res_units, conv_unit)
elif mode == 'decoder':
if in_channels == out_channels:
self.res_block = nn.Sequential(self.upsample, conv_unit, *res_units)
else:
self.res_block = nn.Sequential(conv_unit, *res_units)
def forward(self, x):
out = x
for unit in self.res_block:
out = unit(out)
return out
def inference(self, x):
for unit in self.res_block:
x = unit.inference(x)
return x
@si_module
class ResNetStack(nn.Module):
"""
ResNet encoder or decoder stack. Channel ratios
and strides take the default order of from
data/io-layer, to the middle of the model.
"""
class Config:
input_channels: int = 1
output_channels: int = 1
encode_channels: int = 32
decode_channel_multiplier: int = 1
latent_dim: int = None
kernel_size: int = 7
bias: bool = True
channel_ratios: Tuple[int, ...] = (2, 4, 8, 16)
strides: Tuple[int, ...] = (3, 4, 5, 5)
mode: Literal['encoder', 'decoder'] = 'encoder'
def __init__(self, c: Config):
super().__init__()
assert c.mode in ('encoder', 'decoder'), f"Mode ({c.mode}) is not supported!"
self.mode = c.mode
assert len(c.channel_ratios) == len(c.strides)
channel_ratios = (1,) + c.channel_ratios
strides = c.strides
self.middle_channels = c.encode_channels * channel_ratios[-1]
if c.mode == 'decoder':
channel_ratios = tuple(reversed(channel_ratios))
strides = tuple(reversed(strides))
self.multiplier = c.decode_channel_multiplier if c.mode == 'decoder' else 1
res_blocks = [ResNetBlock(
c.encode_channels * channel_ratios[s_idx] * self.multiplier,
c.encode_channels * channel_ratios[s_idx+1] * self.multiplier,
stride,
kernel_size=c.kernel_size,
bias=c.bias,
mode=c.mode,
) for s_idx, stride in enumerate(strides)]
data_conv = CausalConv1d(
in_channels=c.input_channels if c.mode == 'encoder' else c.encode_channels * self.multiplier,
out_channels=c.encode_channels if c.mode == 'encoder' else c.output_channels,
kernel_size=c.kernel_size,
stride=1,
bias=False,
)
if c.mode == 'encoder':
self.res_stack = nn.Sequential(data_conv, *res_blocks)
elif c.mode == 'decoder':
self.res_stack = nn.Sequential(*res_blocks, data_conv)
if c.latent_dim is not None:
self.latent_proj = Conv1d1x1(self.middle_channels, c.latent_dim, bias=c.bias) if c.mode == 'encoder' else Conv1d1x1(c.latent_dim, self.middle_channels, bias=c.bias)
if self.multiplier != 1:
self.multiplier_proj = Conv1d1x1(self.middle_channels, self.middle_channels * self.multiplier, bias=c.bias)
def forward(self, x, return_feats=False):
if self.c.latent_dim is not None and self.mode == 'decoder':
x = self.latent_proj(x)
if self.multiplier != 1:
x = self.multiplier_proj(x)
feats = []
for block in self.res_stack:
x = block(x)
if return_feats:
feats.append(x)
if self.c.latent_dim is not None and self.mode == 'encoder':
x = self.latent_proj(x)
if return_feats:
feats.append(x)
if return_feats:
return feats
return x
def inference(self, x):
for block in self.res_stack:
x = block.inference(x)
return x
def reset_buffer(self):
def _reset_buffer(m):
if isinstance(m, CausalConv1d) or isinstance(m, CausalConvTranspose1d):
m.reset_buffer()
self.apply(_reset_buffer)
def reset_parameters(self):
def _reset_parameters(m):
if isinstance(m, (nn.Conv1d, nn.ConvTranspose1d)):
m.weight.data.normal_(0.0, 0.01)
self.apply(_reset_parameters)
def apply_weight_norm(self):
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d) or isinstance(
m, nn.ConvTranspose1d
):
nn.utils.parametrizations.weight_norm(m)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(m):
try:
print(m)
nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
@si_module
class GaussianZ(nn.Module):
class Config:
dim: int
latent_dim: int
bias: bool = False
use_weight_norm: bool = False
def __init__(self, c: Config):
super().__init__()
self.proj_in = nn.Linear(c.dim, c.latent_dim * 2, bias=c.bias)
self.proj_out = nn.Linear(c.latent_dim, c.dim, bias=c.bias)
if c.use_weight_norm:
self.proj_in = weight_norm(self.proj_in)
self.proj_out = weight_norm(self.proj_out)
def reparam(self, mu, logvar):
std = T.exp(logvar / 2)
eps = T.randn_like(std)
return mu + eps * std
def kl_divergence(self, mu, logvar):
return T.mean(-0.5 * T.sum(
1 + logvar - mu.pow(2) - logvar.exp(),
dim=(1, 2))
)
def repr_from_latent(self, latent: Union[dict, T.Tensor]):
if isinstance(latent, T.Tensor):
z = latent
else:
z = self.reparam(latent['mu'], latent['logvar'])
l = self.proj_out(z)
return l
def forward(self, x: T.Tensor) -> Tuple[T.Tensor, dict]:
mu, logvar = self.proj_in(x).chunk(2, dim=-1)
kl_div = self.kl_divergence(mu, logvar)
z = self.reparam(mu, logvar)
xhat = self.proj_out(z)
latent = {'mu': mu, 'logvar': logvar, 'z': z, 'kl_divergence': kl_div}
return xhat, latent
@si_module
class WaveCodec(nn.Module):
class Config:
resnet_config: ResNetStack.Config = None
sample_rate: int = 16_000
use_weight_norm: bool = False
compressor_config: dataclass = None
norm_stddev: float = 1.0
def __init__(self, c: Config):
super().__init__()
self.norm_stddev = c.norm_stddev
self.encoder = c.resnet_config(mode='encoder')
self.sample_rate = c.sample_rate
self.total_stride = 1
for stride in c.resnet_config.strides:
self.total_stride *= stride
self.tokens_per_second = self.sample_rate / self.total_stride
self.compressor = c.compressor_config(dim=self.encoder.middle_channels)
self.decoder = c.resnet_config(mode='decoder')
if c.use_weight_norm:
self.encoder.apply_weight_norm()
self.decoder.apply_weight_norm()
self.encoder.reset_parameters()
self.decoder.reset_parameters()
def encode(self, data):
return self.encoder(data/self.norm_stddev)
def decode(self, latent):
return self.decoder(latent.transpose(1, 2))*self.norm_stddev
@T.no_grad()
def latent_from_data(self, data, get_parameters=False):
x = self.encode(data)
l_in = x.transpose(1, 2)
l, latent = self.compressor(l_in)
return latent['z'] if not get_parameters else {
'mu': latent['mu'],
'logvar': latent['logvar'],
'z': latent['z'],
}
@T.no_grad()
def data_from_latent(self, latent):
l = self.compressor.repr_from_latent(latent)
x = self.decode(l)
return x
def process(self, x):
return self.latent_from_data(x)
def unprocess(self, latent):
return self.data_from_latent(latent)
def forward(self, audio_input):
x = self.encode(audio_input)
l_in = x.transpose(1, 2)
l, latent = self.compressor(l_in)
xhat = self.decode(l)
return xhat, latent
def make_tokenizer(device='cuda'):
generator_config = WaveCodec.Config(
resnet_config=ResNetStack.Config(
input_channels=1,
output_channels=1,
encode_channels=16,
decode_channel_multiplier=4,
kernel_size=7,
bias=True,
channel_ratios=(4, 8, 16, 16, 16, 16),
strides=(2, 2, 4, 5, 5, 5),
mode=None,
),
use_weight_norm=True,
compressor_config=GaussianZ.Config(
dim=None,
latent_dim=32,
bias=True,
use_weight_norm=True
),
norm_stddev=0.05,
)
checkpoint = load_ckpt("inference_apatosaurus_95000", expected_hash="ba876edb97b988e9196e449dd176ca97")
tokenizer = generator_config()
load_result = tokenizer.load_state_dict(checkpoint, strict=False)
print_colored(f"Loaded tokenizer state dict: {load_result}", "grey")
tokenizer = tokenizer.eval()
# Only convert to bfloat16 if using CUDA
if device == 'cuda':
tokenizer = tokenizer.bfloat16()
tokenizer = tokenizer.to(device)
tokenizer.requires_grad_ = False
return tokenizer
|