Spaces:
Runtime error
Runtime error
madebyollin
commited on
Commit
•
767b242
1
Parent(s):
0b14af5
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
from diffusers import (
|
7 |
+
StableDiffusion3Pipeline,
|
8 |
+
SD3Transformer2DModel,
|
9 |
+
FlowMatchEulerDiscreteScheduler,
|
10 |
+
AutoencoderTiny,
|
11 |
+
)
|
12 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
13 |
+
|
14 |
+
# import spaces
|
15 |
+
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
dtype = torch.float16
|
18 |
+
|
19 |
+
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
20 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(
|
21 |
+
device
|
22 |
+
)
|
23 |
+
|
24 |
+
taesd3 = (
|
25 |
+
AutoencoderTiny.from_pretrained("madebyollin/taesd3", torch_dtype=torch.float16)
|
26 |
+
.half()
|
27 |
+
.eval()
|
28 |
+
.requires_grad_(False)
|
29 |
+
.to(device)
|
30 |
+
)
|
31 |
+
taesd3.decoder.layers = torch.compile(
|
32 |
+
taesd3.decoder.layers,
|
33 |
+
fullgraph=True,
|
34 |
+
dynamic=False,
|
35 |
+
mode="max-autotune-no-cudagraphs",
|
36 |
+
)
|
37 |
+
|
38 |
+
MAX_SEED = np.iinfo(np.int32).max
|
39 |
+
MAX_IMAGE_SIZE = 1344
|
40 |
+
|
41 |
+
|
42 |
+
def get_pred_original_sample(sched, model_output, timestep, sample):
|
43 |
+
return (
|
44 |
+
sample
|
45 |
+
- sched.sigmas[(sched.timesteps == timestep).nonzero().item()] * model_output
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
def retrieve_timesteps(
|
50 |
+
scheduler,
|
51 |
+
num_inference_steps: Optional[int] = None,
|
52 |
+
device: Optional[Union[str, torch.device]] = None,
|
53 |
+
timesteps: Optional[List[int]] = None,
|
54 |
+
sigmas: Optional[List[float]] = None,
|
55 |
+
**kwargs,
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
59 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
scheduler (`SchedulerMixin`):
|
63 |
+
The scheduler to get timesteps from.
|
64 |
+
num_inference_steps (`int`):
|
65 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
66 |
+
must be `None`.
|
67 |
+
device (`str` or `torch.device`, *optional*):
|
68 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
69 |
+
timesteps (`List[int]`, *optional*):
|
70 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
71 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
72 |
+
sigmas (`List[float]`, *optional*):
|
73 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
74 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
78 |
+
second element is the number of inference steps.
|
79 |
+
"""
|
80 |
+
if timesteps is not None and sigmas is not None:
|
81 |
+
raise ValueError(
|
82 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
83 |
+
)
|
84 |
+
if timesteps is not None:
|
85 |
+
accepts_timesteps = "timesteps" in set(
|
86 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
87 |
+
)
|
88 |
+
if not accepts_timesteps:
|
89 |
+
raise ValueError(
|
90 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
91 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
92 |
+
)
|
93 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
94 |
+
timesteps = scheduler.timesteps
|
95 |
+
num_inference_steps = len(timesteps)
|
96 |
+
elif sigmas is not None:
|
97 |
+
accept_sigmas = "sigmas" in set(
|
98 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
99 |
+
)
|
100 |
+
if not accept_sigmas:
|
101 |
+
raise ValueError(
|
102 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
103 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
104 |
+
)
|
105 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
106 |
+
timesteps = scheduler.timesteps
|
107 |
+
num_inference_steps = len(timesteps)
|
108 |
+
else:
|
109 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
110 |
+
timesteps = scheduler.timesteps
|
111 |
+
return timesteps, num_inference_steps
|
112 |
+
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def sd3_pipe_call_that_returns_an_iterable_of_images(
|
116 |
+
self,
|
117 |
+
prompt: Union[str, List[str]] = None,
|
118 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
119 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
120 |
+
height: Optional[int] = None,
|
121 |
+
width: Optional[int] = None,
|
122 |
+
num_inference_steps: int = 28,
|
123 |
+
timesteps: List[int] = None,
|
124 |
+
guidance_scale: float = 7.0,
|
125 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
126 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
127 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
128 |
+
num_images_per_prompt: Optional[int] = 1,
|
129 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
130 |
+
latents: Optional[torch.FloatTensor] = None,
|
131 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
132 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
133 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
134 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
135 |
+
output_type: Optional[str] = "pil",
|
136 |
+
return_dict: bool = True,
|
137 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
138 |
+
clip_skip: Optional[int] = None,
|
139 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
140 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
141 |
+
):
|
142 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
143 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
144 |
+
|
145 |
+
# 1. Check inputs. Raise error if not correct
|
146 |
+
self.check_inputs(
|
147 |
+
prompt,
|
148 |
+
prompt_2,
|
149 |
+
prompt_3,
|
150 |
+
height,
|
151 |
+
width,
|
152 |
+
negative_prompt=negative_prompt,
|
153 |
+
negative_prompt_2=negative_prompt_2,
|
154 |
+
negative_prompt_3=negative_prompt_3,
|
155 |
+
prompt_embeds=prompt_embeds,
|
156 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
157 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
158 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
159 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
160 |
+
)
|
161 |
+
|
162 |
+
self._guidance_scale = guidance_scale
|
163 |
+
self._clip_skip = clip_skip
|
164 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
165 |
+
self._interrupt = False
|
166 |
+
|
167 |
+
# 2. Define call parameters
|
168 |
+
if prompt is not None and isinstance(prompt, str):
|
169 |
+
batch_size = 1
|
170 |
+
elif prompt is not None and isinstance(prompt, list):
|
171 |
+
batch_size = len(prompt)
|
172 |
+
else:
|
173 |
+
batch_size = prompt_embeds.shape[0]
|
174 |
+
|
175 |
+
device = self._execution_device
|
176 |
+
|
177 |
+
(
|
178 |
+
prompt_embeds,
|
179 |
+
negative_prompt_embeds,
|
180 |
+
pooled_prompt_embeds,
|
181 |
+
negative_pooled_prompt_embeds,
|
182 |
+
) = self.encode_prompt(
|
183 |
+
prompt=prompt,
|
184 |
+
prompt_2=prompt_2,
|
185 |
+
prompt_3=prompt_3,
|
186 |
+
negative_prompt=negative_prompt,
|
187 |
+
negative_prompt_2=negative_prompt_2,
|
188 |
+
negative_prompt_3=negative_prompt_3,
|
189 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
190 |
+
prompt_embeds=prompt_embeds,
|
191 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
192 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
193 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
194 |
+
device=device,
|
195 |
+
clip_skip=self.clip_skip,
|
196 |
+
num_images_per_prompt=num_images_per_prompt,
|
197 |
+
)
|
198 |
+
|
199 |
+
if self.do_classifier_free_guidance:
|
200 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
201 |
+
pooled_prompt_embeds = torch.cat(
|
202 |
+
[negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0
|
203 |
+
)
|
204 |
+
|
205 |
+
# 4. Prepare timesteps
|
206 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
207 |
+
self.scheduler, num_inference_steps, device, timesteps
|
208 |
+
)
|
209 |
+
num_warmup_steps = max(
|
210 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
211 |
+
)
|
212 |
+
self._num_timesteps = len(timesteps)
|
213 |
+
|
214 |
+
# 5. Prepare latent variables
|
215 |
+
num_channels_latents = self.transformer.config.in_channels
|
216 |
+
latents = self.prepare_latents(
|
217 |
+
batch_size * num_images_per_prompt,
|
218 |
+
num_channels_latents,
|
219 |
+
height,
|
220 |
+
width,
|
221 |
+
prompt_embeds.dtype,
|
222 |
+
device,
|
223 |
+
generator,
|
224 |
+
latents,
|
225 |
+
)
|
226 |
+
|
227 |
+
# 6. Denoising loop
|
228 |
+
# with self.progress_bar(total=num_inference_steps) as progress_bar:
|
229 |
+
if True:
|
230 |
+
for i, t in enumerate(timesteps):
|
231 |
+
if self.interrupt:
|
232 |
+
continue
|
233 |
+
|
234 |
+
# expand the latents if we are doing classifier free guidance
|
235 |
+
latent_model_input = (
|
236 |
+
torch.cat([latents] * 2)
|
237 |
+
if self.do_classifier_free_guidance
|
238 |
+
else latents
|
239 |
+
)
|
240 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
241 |
+
timestep = t.expand(latent_model_input.shape[0])
|
242 |
+
|
243 |
+
noise_pred = self.transformer(
|
244 |
+
hidden_states=latent_model_input,
|
245 |
+
timestep=timestep,
|
246 |
+
encoder_hidden_states=prompt_embeds,
|
247 |
+
pooled_projections=pooled_prompt_embeds,
|
248 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
249 |
+
return_dict=False,
|
250 |
+
)[0]
|
251 |
+
|
252 |
+
# perform guidance
|
253 |
+
if self.do_classifier_free_guidance:
|
254 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
255 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
256 |
+
noise_pred_text - noise_pred_uncond
|
257 |
+
)
|
258 |
+
|
259 |
+
# compute the previous noisy sample x_t -> x_t-1
|
260 |
+
latents_dtype = latents.dtype
|
261 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
262 |
+
|
263 |
+
x0_pred = get_pred_original_sample(self.scheduler, noise_pred, t, latents)
|
264 |
+
yield self.image_processor.postprocess(taesd3.decode(x0_pred)[0])[0]
|
265 |
+
|
266 |
+
# if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
267 |
+
# progress_bar.update()
|
268 |
+
#
|
269 |
+
yield self.image_processor.postprocess(
|
270 |
+
self.vae.decode(
|
271 |
+
(latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor,
|
272 |
+
return_dict=False,
|
273 |
+
)[0]
|
274 |
+
)[0]
|
275 |
+
|
276 |
+
|
277 |
+
# @spaces.GPU
|
278 |
+
def infer(
|
279 |
+
prompt,
|
280 |
+
negative_prompt,
|
281 |
+
seed,
|
282 |
+
randomize_seed,
|
283 |
+
width,
|
284 |
+
height,
|
285 |
+
guidance_scale,
|
286 |
+
num_inference_steps,
|
287 |
+
progress=gr.Progress(track_tqdm=True),
|
288 |
+
):
|
289 |
+
if randomize_seed:
|
290 |
+
seed = random.randint(0, MAX_SEED)
|
291 |
+
|
292 |
+
generator = torch.Generator().manual_seed(seed)
|
293 |
+
|
294 |
+
yield from sd3_pipe_call_that_returns_an_iterable_of_images(
|
295 |
+
pipe,
|
296 |
+
prompt=prompt,
|
297 |
+
negative_prompt=negative_prompt,
|
298 |
+
guidance_scale=guidance_scale,
|
299 |
+
num_inference_steps=num_inference_steps,
|
300 |
+
width=width,
|
301 |
+
height=height,
|
302 |
+
generator=generator,
|
303 |
+
)
|
304 |
+
|
305 |
+
|
306 |
+
examples = [
|
307 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
308 |
+
"An astronaut riding a green horse",
|
309 |
+
"A delicious ceviche cheesecake slice",
|
310 |
+
]
|
311 |
+
|
312 |
+
css = """
|
313 |
+
#col-container {
|
314 |
+
margin: 0 auto;
|
315 |
+
max-width: 580px;
|
316 |
+
}
|
317 |
+
"""
|
318 |
+
|
319 |
+
with gr.Blocks(css=css) as demo:
|
320 |
+
|
321 |
+
with gr.Column(elem_id="col-container"):
|
322 |
+
gr.Markdown(
|
323 |
+
f"""
|
324 |
+
# Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
|
325 |
+
Learn more about the [Stable Diffusion 3 series](https://stability.ai/news/stable-diffusion-3). Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), [Stable Assistant](https://stability.ai/stable-assistant), or on Discord via [Stable Artisan](https://stability.ai/stable-artisan). Run locally with [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [diffusers](https://github.com/huggingface/diffusers)
|
326 |
+
"""
|
327 |
+
)
|
328 |
+
|
329 |
+
with gr.Row():
|
330 |
+
|
331 |
+
prompt = gr.Text(
|
332 |
+
label="Prompt",
|
333 |
+
show_label=False,
|
334 |
+
max_lines=1,
|
335 |
+
placeholder="Enter your prompt",
|
336 |
+
container=False,
|
337 |
+
)
|
338 |
+
|
339 |
+
run_button = gr.Button("Run", scale=0)
|
340 |
+
|
341 |
+
result = gr.Image(label="Result", show_label=False)
|
342 |
+
|
343 |
+
with gr.Accordion("Advanced Settings", open=False):
|
344 |
+
|
345 |
+
negative_prompt = gr.Text(
|
346 |
+
label="Negative prompt",
|
347 |
+
max_lines=1,
|
348 |
+
placeholder="Enter a negative prompt",
|
349 |
+
)
|
350 |
+
|
351 |
+
seed = gr.Slider(
|
352 |
+
label="Seed",
|
353 |
+
minimum=0,
|
354 |
+
maximum=MAX_SEED,
|
355 |
+
step=1,
|
356 |
+
value=0,
|
357 |
+
)
|
358 |
+
|
359 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
360 |
+
|
361 |
+
with gr.Row():
|
362 |
+
|
363 |
+
width = gr.Slider(
|
364 |
+
label="Width",
|
365 |
+
minimum=256,
|
366 |
+
maximum=MAX_IMAGE_SIZE,
|
367 |
+
step=64,
|
368 |
+
value=1024,
|
369 |
+
)
|
370 |
+
|
371 |
+
height = gr.Slider(
|
372 |
+
label="Height",
|
373 |
+
minimum=256,
|
374 |
+
maximum=MAX_IMAGE_SIZE,
|
375 |
+
step=64,
|
376 |
+
value=1024,
|
377 |
+
)
|
378 |
+
|
379 |
+
with gr.Row():
|
380 |
+
|
381 |
+
guidance_scale = gr.Slider(
|
382 |
+
label="Guidance scale",
|
383 |
+
minimum=0.0,
|
384 |
+
maximum=10.0,
|
385 |
+
step=0.1,
|
386 |
+
value=5.0,
|
387 |
+
)
|
388 |
+
|
389 |
+
num_inference_steps = gr.Slider(
|
390 |
+
label="Number of inference steps",
|
391 |
+
minimum=1,
|
392 |
+
maximum=50,
|
393 |
+
step=1,
|
394 |
+
value=28,
|
395 |
+
)
|
396 |
+
|
397 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
398 |
+
gr.on(
|
399 |
+
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
400 |
+
fn=infer,
|
401 |
+
inputs=[
|
402 |
+
prompt,
|
403 |
+
negative_prompt,
|
404 |
+
seed,
|
405 |
+
randomize_seed,
|
406 |
+
width,
|
407 |
+
height,
|
408 |
+
guidance_scale,
|
409 |
+
num_inference_steps,
|
410 |
+
],
|
411 |
+
outputs=result,
|
412 |
+
)
|
413 |
+
|
414 |
+
demo.launch(share=True)
|