#!/usr/bin/env python3
import gradio as gr
import numpy as np
import random
import torch
from diffusers import (
    StableDiffusion3Pipeline,
    SD3Transformer2DModel,
    FlowMatchEulerDiscreteScheduler,
    AutoencoderTiny,
)
from typing import Any, Callable, Dict, List, Optional, Union

# import spaces

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16

repo = "stabilityai/stable-diffusion-3-medium-diffusers"
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(
    device
)

taesd3 = (
    AutoencoderTiny.from_pretrained("madebyollin/taesd3", torch_dtype=torch.float16)
    .half()
    .eval()
    .requires_grad_(False)
    .to(device)
)
taesd3.decoder.layers = torch.compile(
    taesd3.decoder.layers,
    fullgraph=True,
    dynamic=False,
    mode="max-autotune-no-cudagraphs",
)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1344


def get_pred_original_sample(sched, model_output, timestep, sample):
    return (
        sample
        - sched.sigmas[(sched.timesteps == timestep).nonzero().item()] * model_output
    )


def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError(
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
        )
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


@torch.no_grad()
def sd3_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    prompt_3: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.0,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    negative_prompt_2: Optional[Union[str, List[str]]] = None,
    negative_prompt_3: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    clip_skip: Optional[int] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        prompt_2,
        prompt_3,
        height,
        width,
        negative_prompt=negative_prompt,
        negative_prompt_2=negative_prompt_2,
        negative_prompt_3=negative_prompt_3,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
    )

    self._guidance_scale = guidance_scale
    self._clip_skip = clip_skip
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    device = self._execution_device

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_3=prompt_3,
        negative_prompt=negative_prompt,
        negative_prompt_2=negative_prompt_2,
        negative_prompt_3=negative_prompt_3,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        device=device,
        clip_skip=self.clip_skip,
        num_images_per_prompt=num_images_per_prompt,
    )

    if self.do_classifier_free_guidance:
        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
        pooled_prompt_embeds = torch.cat(
            [negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0
        )

    # 4. Prepare timesteps
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler, num_inference_steps, device, timesteps
    )
    num_warmup_steps = max(
        len(timesteps) - num_inference_steps * self.scheduler.order, 0
    )
    self._num_timesteps = len(timesteps)

    # 5. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )

    # 6. Denoising loop
    # with self.progress_bar(total=num_inference_steps) as progress_bar:
    if True:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            # expand the latents if we are doing classifier free guidance
            latent_model_input = (
                torch.cat([latents] * 2)
                if self.do_classifier_free_guidance
                else latents
            )
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = t.expand(latent_model_input.shape[0])

            noise_pred = self.transformer(
                hidden_states=latent_model_input,
                timestep=timestep,
                encoder_hidden_states=prompt_embeds,
                pooled_projections=pooled_prompt_embeds,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )

            # compute the previous noisy sample x_t -> x_t-1
            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            x0_pred = get_pred_original_sample(self.scheduler, noise_pred, t, latents)
            yield self.image_processor.postprocess(taesd3.decode(x0_pred)[0])[0]

    # 			if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
    # 				progress_bar.update()
    #
    yield self.image_processor.postprocess(
        self.vae.decode(
            (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor,
            return_dict=False,
        )[0]
    )[0]


# @spaces.GPU
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    yield from sd3_pipe_call_that_returns_an_iterable_of_images(
        pipe,
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    )


examples = [
    "A beautiful discovery in the north cascades",
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 580px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            f"""
        # Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium) with real-time [TAESD3](https://huggingface.co/madebyollin/taesd3) previews
        Learn more about the [Stable Diffusion 3 series](https://stability.ai/news/stable-diffusion-3). Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), [Stable Assistant](https://stability.ai/stable-assistant), or on Discord via [Stable Artisan](https://stability.ai/stable-artisan). Run locally with [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [diffusers](https://github.com/huggingface/diffusers)
        """
        )

        with gr.Row():

            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():

                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1024,
                )

            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=3.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit, negative_prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=result,
    )

demo.launch(share=True)