Spaces:
Paused
Paused
File size: 6,394 Bytes
1ca8185 80cc34d 1ca8185 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
import gradio as gr
import spaces
import torch
import torch.nn as nn
from diffusers import EulerDiscreteScheduler, AutoencoderKL, UNet2DConditionModel
from huggingface_hub import hf_hub_download
from transformers import SiglipImageProcessor, SiglipVisionModel
from torchvision.io import read_image
import torchvision.transforms.v2 as transforms
from torchvision.utils import make_grid
class TryOffDiff(nn.Module):
def __init__(self):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
self.transformer = torch.nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True)
self.proj = nn.Linear(1024, 77)
self.norm = nn.LayerNorm(768)
def adapt_embeddings(self, x):
x = self.transformer(x)
x = self.proj(x.permute(0, 2, 1)).permute(0, 2, 1)
return self.norm(x)
def forward(self, noisy_latents, t, cond_emb):
cond_emb = self.adapt_embeddings(cond_emb)
return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb).sample
class PadToSquare:
def __call__(self, img):
_, h, w = img.shape # Get the original dimensions
max_side = max(h, w)
pad_h = (max_side - h) // 2
pad_w = (max_side - w) // 2
padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h)
return transforms.functional.pad(img, padding, padding_mode="edge")
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize Image Encoder
img_processor = SiglipImageProcessor.from_pretrained(
"google/siglip-base-patch16-512",
do_resize=False,
do_rescale=False,
do_normalize=False
)
img_enc = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-512").eval().to(device)
img_enc_transform = transforms.Compose([
PadToSquare(), # Custom transform to pad the image to a square
transforms.Resize((512, 512)),
transforms.ToDtype(torch.float32, scale=True),
transforms.Normalize(mean=[0.5], std=[0.5]),
])
# Load TryOffDiff Model
path_model = hf_hub_download(
repo_id="rizavelioglu/tryoffdiff",
filename="tryoffdiff.pth", # or one of ["ldm-1", "ldm-2", "ldm-3", ...],
force_download=False
)
path_scheduler = hf_hub_download(
repo_id="rizavelioglu/tryoffdiff",
filename="scheduler/scheduler_config.json",
force_download=False
)
net = TryOffDiff()
net.load_state_dict(torch.load(path_model, weights_only=False))
net.eval().to(device)
# Initialize VAE (only Decoder will be used)
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").eval().to(device)
torch.cuda.empty_cache()
# Define image generation function
@spaces.GPU(duration=10)
@torch.no_grad()
def generate_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
# Configure scheduler
scheduler = EulerDiscreteScheduler.from_pretrained(path_scheduler)
scheduler.is_scale_input_called = True # suppress warning
scheduler.set_timesteps(num_inference_steps)
# Set random seed
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
# Process input image
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(img_enc.device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
# Prepare unconditioned embeddings
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
# Denoising loop with mixed precision
with torch.autocast(device):
for t in scheduler.timesteps:
if guidance_scale > 1:
noise_pred = net(
torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])
).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
else:
noise_pred = net(x, t, cond_emb)
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode preds
decoded = vae.decode(1 / 0.18215 * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
# Create grid
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
if is_upscale:
pass
else:
return transforms.ToPILImage()(grid)
title = "Virtual Try-Off Generator"
description = r"""
This is the demo of the paper <a href="https://arxiv.org/abs/2411.18350">TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models</a>.
<br>Upload an image of a clothed individual to generate a standardized garment image using TryOffDiff.
<br> Check out the <a href="https://rizavelioglu.github.io/tryoffdiff/">project page</a> for more information.
"""
article = r"""
Example images are sampled from the `VITON-HD-test` set, which the models did not see during training.
<br>**Citation** <br>If you find our work useful in your research, please consider giving a star ⭐ and
a citation:
```
@article{velioglu2024tryoffdiff,
title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models},
author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
journal = {arXiv},
year = {2024},
note = {\url{https://doi.org/nt3n}}
}
```
"""
examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in sorted(os.listdir("examples/"))]
# Create Gradio App
demo = gr.Interface(
fn=generate_image,
inputs=[
gr.Image(type="filepath", label="Reference Image"),
gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed"),
gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance applied at s=1, hence faster inference."),
gr.Slider(value=20, minimum=0, maximum=1000, step=10, label="# of Inference Steps"),
gr.Checkbox(value=False, label="Upscale Output")
],
outputs=gr.Image(type="pil", label="Generated Garment", height=512, width=512),
title=title,
description=description,
article=article,
examples=examples,
examples_per_page=4,
)
demo.launch()
|