import os
from pathlib import Path
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
from esrgan_model import UpscalerESRGAN
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
import torch
import torch.nn as nn
from torchvision.io import read_image
import torchvision.transforms.v2 as transforms
from torchvision.utils import make_grid
from transformers import SiglipImageProcessor, SiglipVisionModel
class TryOffDiff(nn.Module):
def __init__(self):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
self.transformer = torch.nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True)
self.proj = nn.Linear(1024, 77)
self.norm = nn.LayerNorm(768)
def adapt_embeddings(self, x):
x = self.transformer(x)
x = self.proj(x.permute(0, 2, 1)).permute(0, 2, 1)
return self.norm(x)
def forward(self, noisy_latents, t, cond_emb):
cond_emb = self.adapt_embeddings(cond_emb)
return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb).sample
class PadToSquare:
def __call__(self, img):
_, h, w = img.shape # Get the original dimensions
max_side = max(h, w)
pad_h = (max_side - h) // 2
pad_w = (max_side - w) // 2
padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h)
return transforms.functional.pad(img, padding, padding_mode="edge")
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize Image Encoder
img_processor = SiglipImageProcessor.from_pretrained(
"google/siglip-base-patch16-512", do_resize=False, do_rescale=False, do_normalize=False
)
img_enc = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-512").eval().to(device)
img_enc_transform = transforms.Compose(
[
PadToSquare(), # Custom transform to pad the image to a square
transforms.Resize((512, 512)),
transforms.ToDtype(torch.float32, scale=True),
transforms.Normalize(mean=[0.5], std=[0.5]),
]
)
# Load TryOffDiff Model
path_model = hf_hub_download(
repo_id="rizavelioglu/tryoffdiff",
filename="tryoffdiff.pth", # or one of ["ldm-1", "ldm-2", "ldm-3", ...],
force_download=False,
)
path_scheduler = hf_hub_download(
repo_id="rizavelioglu/tryoffdiff", filename="scheduler/scheduler_config.json", force_download=False
)
net = TryOffDiff()
net.load_state_dict(torch.load(path_model, weights_only=False))
net.eval().to(device)
# Initialize VAE (only Decoder will be used)
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").eval().to(device)
# Initialize the upscaler
upscaler = UpscalerESRGAN(
model_path=Path(
hf_hub_download(
repo_id="philz1337x/upscaler",
filename="4x-UltraSharp.pth",
# revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
)
),
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
dtype=torch.float32,
)
torch.cuda.empty_cache()
# Define image generation function
@spaces.GPU(duration=10)
@torch.no_grad()
def generate_image(
input_image, seed: int = 42, guidance_scale: float = 2.0, num_inference_steps: int = 50, is_upscale: bool = False
):
# Configure scheduler
scheduler = EulerDiscreteScheduler.from_pretrained(path_scheduler)
scheduler.is_scale_input_called = True # suppress warning
scheduler.set_timesteps(num_inference_steps)
# Set seed for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
# Process input image
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(img_enc.device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
# Prepare unconditioned embeddings (only if guidance is enabled)
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
# Diffusion denoising loop with mixed precision for efficiency
with torch.autocast(device):
for t in scheduler.timesteps:
if guidance_scale > 1:
# Classifier-Free Guidance (CFG)
noise_pred = net(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
else:
# Standard prediction
noise_pred = net(x, t, cond_emb)
# Scheduler step
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode predictions from latent space
decoded = vae.decode(1 / 0.18215 * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
# Create grid
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
output_image = transforms.ToPILImage()(grid)
# Optionally upscale the output image
if is_upscale:
output_image = upscaler(output_image)
return output_image
title = "Virtual Try-Off Generator"
description = r"""
This is the demo of the paper TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models.
Upload an image of a clothed individual to generate a standardized garment image using TryOffDiff.
Check out the project page for more information.
"""
article = r"""
Example images are sampled from the `VITON-HD-test` set, which the models did not see during training.
**Citation**
If you find our work useful in your research, please consider giving a star ⭐ and
a citation:
```
@article{velioglu2024tryoffdiff,
title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models},
author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
journal = {arXiv},
year = {2024},
note = {\url{https://doi.org/nt3n}}
}
```
"""
examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in sorted(os.listdir("examples/"))]
# Create Gradio App
demo = gr.Interface(
fn=generate_image,
inputs=[
gr.Image(type="filepath", label="Reference Image", height=1024, width=1024),
gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed"),
gr.Slider(
value=2.0,
minimum=1,
maximum=5,
step=0.5,
label="Guidance Scale(s)",
info="No guidance applied at s=1, hence faster inference.",
),
gr.Slider(value=20, minimum=0, maximum=1000, step=10, label="# of Inference Steps"),
gr.Checkbox(
value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model."
),
],
outputs=gr.Image(type="pil", label="Generated Garment", height=1024, width=1024),
title=title,
description=description,
article=article,
examples=examples,
examples_per_page=4,
submit_btn="Generate",
)
demo.launch()