Spaces:
Runtime error
Runtime error
File size: 6,043 Bytes
308f73c 8c1a582 ab501f0 d9dfc16 ab501f0 8c1a582 6fab635 8c1a582 6fab635 8c1a582 308f73c 6fab635 d9dfc16 8c1a582 6fab635 8c1a582 6fab635 8c1a582 2ade011 8c1a582 2ade011 8c1a582 4552efd 8c1a582 9365321 8c1a582 2ade011 8c1a582 9365321 aa32379 9365321 6fab635 9365321 6fab635 9365321 8c1a582 d9dfc16 8c1a582 d9dfc16 8c1a582 6fab635 8c1a582 6fab635 8c1a582 8cac7d7 ba5542b 8cac7d7 8c1a582 213ad26 8c1a582 213ad26 8c1a582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import gradio as gr
import pandas as pd
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
FAQ_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
from PIL import Image
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
import copy
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
# Searching and filtering
raw_data = dummydf()
methods = list(set(raw_data['Method']))
metrics = ["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA", "FID", "Time (s)", "Storage (GB)", "Memory (GB)"]
def update_table(
hidden_df: pd.DataFrame,
columns_1: list,
columns_2: list,
columns_3: list,
model1: list,
):
filtered_df = select_columns(hidden_df, columns_1, columns_2, columns_3)
filtered_df = filter_model1(filtered_df, model1)
return filtered_df
def select_columns(df: pd.DataFrame, columns_1: list, columns_2: list, columns_3: list) -> pd.DataFrame:
always_here_cols = ["Method"]
# We use COLS to maintain sorting
all_columns = metrics
if (len(columns_1)+len(columns_2) + len(columns_3)) == 0:
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns]
]
else:
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns and (c in columns_1 or c in columns_2 or c in columns_3 ) ]
]
return filtered_df
def filter_model1(df: pd.DataFrame, model_query: list) -> pd.DataFrame:
# Show all models
if len(model_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Method"].isin(model_query)]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
with gr.Row():
gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1,
show_download_button=False, container=False)
gr.HTML(TITLE, elem_id="title")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
UnlearnCanvas Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
model1_column = gr.CheckboxGroup(
label="Unlearning Methods",
choices=methods,
interactive=True,
elem_id="column-select",
)
with gr.Row():
shown_columns_1 = gr.CheckboxGroup(
choices=["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA"],
label="Style / Object Unlearning Effectiveness",
elem_id="column-select",
interactive=True,
)
with gr.Row():
shown_columns_2 = gr.CheckboxGroup(
choices=["FID"],
label="Image Quality",
elem_id="column-select",
interactive=True,
)
with gr.Row():
shown_columns_3 = gr.CheckboxGroup(
choices=["Time (s)", "Memory (GB)", "Storage (GB)"],
label="Resource Costs",
elem_id="column-select",
interactive=True,
)
leaderboard_table = gr.components.Dataframe(
value= raw_data,
elem_id="leaderboard-table",
interactive=False,
visible=True,
# column_widths=["2%", "33%"]
)
game_bench_df_for_search = gr.components.Dataframe(
value= raw_data,
elem_id="leaderboard-table",
interactive=False,
visible=False,
# column_widths=["2%", "33%"]
)
for selector in [shown_columns_1,shown_columns_2, shown_columns_3, model1_column]:
selector.change(
update_table,
[
game_bench_df_for_search,
shown_columns_1,
shown_columns_2,
shown_columns_3,
model1_column,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π Model Submit", elem_id="llm-benchmark-tab-table", id=1):
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=True):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=8,
elem_id="citation-button",
show_copy_button=True,
)
demo.launch()
|