Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
FAQ_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO | |
from PIL import Image | |
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf | |
import copy | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) | |
# Searching and filtering | |
raw_data = dummydf() | |
methods = list(set(raw_data['Method'])) | |
metrics = ["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA", "FID", "Time (s)", "Storage (GB)", "Memory (GB)"] | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns_1: list, | |
columns_2: list, | |
columns_3: list, | |
model1: list, | |
): | |
filtered_df = select_columns(hidden_df, columns_1, columns_2, columns_3) | |
filtered_df = filter_model1(filtered_df, model1) | |
return filtered_df | |
def select_columns(df: pd.DataFrame, columns_1: list, columns_2: list, columns_3: list) -> pd.DataFrame: | |
always_here_cols = ["Method"] | |
# We use COLS to maintain sorting | |
all_columns = metrics | |
if (len(columns_1)+len(columns_2) + len(columns_3)) == 0: | |
filtered_df = df[ | |
always_here_cols + | |
[c for c in all_columns if c in df.columns] | |
] | |
else: | |
filtered_df = df[ | |
always_here_cols + | |
[c for c in all_columns if c in df.columns and (c in columns_1 or c in columns_2 or c in columns_3 ) ] | |
] | |
return filtered_df | |
def filter_model1(df: pd.DataFrame, model_query: list) -> pd.DataFrame: | |
# Show all models | |
if len(model_query) == 0: | |
return df | |
filtered_df = df | |
filtered_df = filtered_df[filtered_df["Method"].isin(model_query)] | |
return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
with gr.Row(): | |
gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1, | |
show_download_button=False, container=False) | |
gr.HTML(TITLE, elem_id="title") | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π UnlearnCanvas Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
model1_column = gr.CheckboxGroup( | |
label="Unlearning Methods", | |
choices=methods, | |
interactive=True, | |
elem_id="column-select", | |
) | |
with gr.Row(): | |
shown_columns_1 = gr.CheckboxGroup( | |
choices=["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA"], | |
label="Style / Object Unlearning Effectiveness", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Row(): | |
shown_columns_2 = gr.CheckboxGroup( | |
choices=["FID"], | |
label="Image Quality", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Row(): | |
shown_columns_3 = gr.CheckboxGroup( | |
choices=["Time (s)", "Memory (GB)", "Storage (GB)"], | |
label="Resource Costs", | |
elem_id="column-select", | |
interactive=True, | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value= raw_data, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
# column_widths=["2%", "33%"] | |
) | |
game_bench_df_for_search = gr.components.Dataframe( | |
value= raw_data, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=False, | |
# column_widths=["2%", "33%"] | |
) | |
for selector in [shown_columns_1,shown_columns_2, shown_columns_3, model1_column]: | |
selector.change( | |
update_table, | |
[ | |
game_bench_df_for_search, | |
shown_columns_1, | |
shown_columns_2, | |
shown_columns_3, | |
model1_column, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
with gr.TabItem("π Model Submit", elem_id="llm-benchmark-tab-table", id=1): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=True): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=8, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
demo.launch() | |