import gradio as gr import pandas as pd from src.display.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, FAQ_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, NUMERIC_INTERVALS, TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO from PIL import Image from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf import copy def restart_space(): API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) # Searching and filtering gtbench_raw_data = dummydf() methods = list(set(gtbench_raw_data['Method'])) metrics = ["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA", "FID", "Time (s)", "Storage (GB)", "Memory (GB)"] def update_table( hidden_df: pd.DataFrame, columns_1: list, columns_2: list, columns_3: list, model1: list, ): filtered_df = select_columns(hidden_df, columns_1, columns_2, columns_3) filtered_df = filter_model1(filtered_df, model1) return filtered_df def select_columns(df: pd.DataFrame, columns_1: list, columns_2: list, columns_3: list) -> pd.DataFrame: always_here_cols = [ "Method" ] # We use COLS to maintain sorting all_columns = metrics if (len(columns_1)+len(columns_2) + len(columns_3)) == 0: filtered_df = df[ always_here_cols + [c for c in all_columns if c in df.columns] ] else: filtered_df = df[ always_here_cols + [c for c in all_columns if c in df.columns and (c in columns_1 or c in columns_2 or c in columns_3 ) ] ] return filtered_df def filter_model1( df: pd.DataFrame, model_query: list ) -> pd.DataFrame: # Show all models if len(model_query) == 0: return df filtered_df = df filtered_df = filtered_df[filtered_df["Model"].isin( model_query)] return filtered_df demo = gr.Blocks(css=custom_css) with demo: with gr.Row(): gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1, show_download_button=False, container=False) gr.HTML(TITLE, elem_id="title") gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 UnlearnCanvas Benchmark", elem_id="llm-benchmark-tab-table", id=0): with gr.Row(): with gr.Column(): with gr.Row(): model1_column = gr.CheckboxGroup( label="Unlearning Methods", choices=methods, interactive=True, elem_id="filter-columns-type", ) with gr.Row(): shown_columns_1 = gr.CheckboxGroup( choices=["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA"], label="Style / Object Unlearning Effectiveness", elem_id="column-select", interactive=True, ) with gr.Row(): shown_columns_2 = gr.CheckboxGroup( choices=["FID"], label="Image Quality", elem_id="column-select", interactive=True, ) with gr.Row(): shown_columns_3 = gr.CheckboxGroup( choices=["Time (s)", "Memory (GB)", "Storage (GB)"], label="Resource Costs", elem_id="column-select", interactive=True, ) leaderboard_table = gr.components.Dataframe( value=gtbench_raw_data, elem_id="leaderboard-table", interactive=False, visible=True, # column_widths=["2%", "33%"] ) game_bench_df_for_search = gr.components.Dataframe( value=gtbench_raw_data, elem_id="leaderboard-table", interactive=False, visible=False, # column_widths=["2%", "33%"] ) for selector in [shown_columns_1,shown_columns_2, shown_columns_3, model1_column]: selector.change( update_table, [ game_bench_df_for_search, shown_columns_1, shown_columns_2, shown_columns_3, model1_column, ], leaderboard_table, queue=True, ) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") with gr.Row(): with gr.Accordion("📙 Citation", open=True): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=8, elem_id="citation-button", show_copy_button=True, ) demo.launch()