Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +53 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
|
6 |
+
model = joblib.load('model (1).joblib')
|
7 |
+
unique_values = joblib.load('unique_values (1).joblib')
|
8 |
+
|
9 |
+
unique_Married_Single = unique_values["Married/Single"]
|
10 |
+
unique_House_Ownership = unique_values["House_Ownership"]
|
11 |
+
unique_Car_Ownership = unique_values["Car_Ownership"]
|
12 |
+
unique_Profession = unique_values["Profession"]
|
13 |
+
unique_CITY = unique_values["CITY"]
|
14 |
+
unique_STATE = unique_values["STATE"]
|
15 |
+
|
16 |
+
|
17 |
+
def main():
|
18 |
+
st.title("Loan Risk_Flag Analysis")
|
19 |
+
|
20 |
+
with st.form("questionaire"):
|
21 |
+
Income = st.slider("Income", min_value=10000, max_value=9999999)
|
22 |
+
Age = st.slider("Age", min_value=10, max_value=100)
|
23 |
+
Experience = st.slider("Experience", min_value=0, max_value=20)
|
24 |
+
CURRENT_JOB_YRS = st.slider("CURRENT_JOB_YRS", min_value=0, max_value=14)
|
25 |
+
CURRENT_HOUSE_YRS = st.slider("CURRENT_HOUSE_YRS", min_value=10, max_value=14)
|
26 |
+
|
27 |
+
Married_Single = st.selectbox("Married/Single", unique_Married_Single)
|
28 |
+
House_Ownership = st.selectbox("House_Ownership", unique_House_Ownership)
|
29 |
+
Car_Ownership = st.selectbox("Car_Ownership", unique_Car_Ownership)
|
30 |
+
Profession = st.selectbox("Profession", unique_Profession)
|
31 |
+
CITY = st.selectbox("CITY", unique_CITY)
|
32 |
+
STATE = st.selectbox("STATE", unique_STATE)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
clicked = st.form_submit_button("Predict Risk_Flag")
|
37 |
+
if clicked:
|
38 |
+
result=model.predict(pd.DataFrame({"Income": [Income],
|
39 |
+
"Age": [Age],
|
40 |
+
"Experience": [Experience],
|
41 |
+
"CURRENT_JOB_YRS": [CURRENT_JOB_YRS],
|
42 |
+
"CURRENT_HOUSE_YRS": [CURRENT_HOUSE_YRS],
|
43 |
+
"Married_Single": [Married_Single],
|
44 |
+
"House_Ownership": [House_Ownership],
|
45 |
+
"Car_Ownership": [Car_Ownership],
|
46 |
+
"Profession": [Profession],
|
47 |
+
"CITY": [CITY],
|
48 |
+
"STATE": [STATE]}))
|
49 |
+
result = 'none_risk_flag' if result[0] == 1 else 'risk_flag'
|
50 |
+
st.success('The predicted income is {}'.format(result))
|
51 |
+
|
52 |
+
if __name__=='__main__':
|
53 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib
|
2 |
+
pandas
|
3 |
+
scikit-learn==1.2.2
|
4 |
+
xgboost==1.7.6
|
5 |
+
altair<5
|