import joblib import pandas as pd import streamlit as st model = joblib.load('model.joblib') unique_values = joblib.load('unique_values.joblib') unique_Married_Single = unique_values["Married/Single"] unique_House_Ownership = unique_values["House_Ownership"] unique_Car_Ownership = unique_values["Car_Ownership"] unique_Profession = unique_values["Profession"] unique_CITY = unique_values["CITY"] unique_STATE = unique_values["STATE"] def main(): st.title("Loan Risk_Flag Analysis") with st.form("questionaire"): Income = st.slider("Income", min_value=10000, max_value=9999999) Age = st.slider("Age", min_value=10, max_value=100) Experience = st.slider("Experience", min_value=0, max_value=20) CURRENT_JOB_YRS = st.slider("CURRENT_JOB_YRS", min_value=0, max_value=14) CURRENT_HOUSE_YRS = st.slider("CURRENT_HOUSE_YRS", min_value=10, max_value=14) Married_Single = st.selectbox("Married/Single", unique_Married_Single) House_Ownership = st.selectbox("House_Ownership", unique_House_Ownership) Car_Ownership = st.selectbox("Car_Ownership", unique_Car_Ownership) Profession = st.selectbox("Profession", unique_Profession) CITY = st.selectbox("CITY", unique_CITY) STATE = st.selectbox("STATE", unique_STATE) clicked = st.form_submit_button("Predict Risk_Flag") if clicked: result=model.predict(pd.DataFrame({"Income": [Income], "Age": [Age], "Experience": [Experience], "Married/Single": [Married_Single], "House_Ownership": [House_Ownership], "Car_Ownership": [Car_Ownership], "Profession": [Profession], "CITY": [CITY], "STATE": [STATE], "CURRENT_JOB_YRS": [CURRENT_JOB_YRS], "CURRENT_HOUSE_YRS": [CURRENT_HOUSE_YRS]})) result = 'none_risk_flag' if result[0] == 1 else 'risk_flag' st.success('The predicted is {}'.format(result)) if __name__=='__main__': main()