File size: 23,452 Bytes
11fa0f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
#!/usr/bin/env python
# coding=utf-8
'''
This script is used to reformat the downloaded datasets into the format that can be used by the model.
Here we use jsonl for the converted data. Each line in the jsonl file is a json object formatted as follows:
{
    "dataset": "dataset_name",
    "id": "unique_id",
    "messages": [
        {"role": "system", "content": "message_text"}, # optional
        {"role": "user", "content": "message_text"},
        {"role": "assistant", "content": "message_text"},
        {"role": "user", "content": "message_text"},
        {"role": "assistant", "content": "message_text"},
        ...
    ],
}
'''

import json
import random
import re
import os
import pandas as pd
import argparse
from instruction_encode_templates import encode_instruction_example, encode_few_shot_example


def convert_super_ni_data(data_dir, output_dir, zero_shot_examples_per_task=60, few_shot_examples_per_task=20, n_few_shot=2):
    os.makedirs(output_dir, exist_ok=True)
    train_tasks = []
    with open(os.path.join(data_dir, "splits", "xlingual", "train_tasks.txt"), "r") as fin:
        for line in fin:
            if not "_mmmlu_" in line:   # skip mmlu to avoid test leakage
                train_tasks.append(line.strip())
    with open(os.path.join(output_dir, "super_ni_data.jsonl"), "w") as fout:
        for task in train_tasks:
            with open(os.path.join(data_dir, "tasks", f"{task}.json"), "r") as fin:
                task_data = json.load(fin)
            instruction = task_data["Definition"][0]
            if zero_shot_examples_per_task + few_shot_examples_per_task < len(task_data["Instances"]):
                instances = random.sample(task_data["Instances"], k=zero_shot_examples_per_task+few_shot_examples_per_task)
            else:
                instances = task_data["Instances"]
            for instance in instances[:zero_shot_examples_per_task]:
                encoded_example = encode_instruction_example(
                    instruction=instruction, 
                    input=instance["input"], 
                    output=instance["output"][0],
                    random_template=True,
                    eos_token=None
                )
                fout.write(json.dumps({
                    "dataset": "super_ni",
                    "id": f"super_ni_{instance['id']}",
                    "messages": [
                        {"role": "user", "content": encoded_example["prompt"]},
                        {"role": "assistant", "content": encoded_example["completion"]},
                    ]
                }) + "\n")
            for instance in instances[zero_shot_examples_per_task:]:
                if n_few_shot < len(task_data["Positive Examples"]):
                    examplars = random.sample(task_data["Positive Examples"], k=n_few_shot)
                else:
                    examplars = task_data["Positive Examples"]
                encoded_example = encode_few_shot_example(
                    instruction=instruction,
                    examplars=examplars,
                    input=instance["input"],
                    output=instance["output"][0],
                    eos_token=None
                )
                fout.write(json.dumps({
                    "dataset": "super_ni",
                    "id": f"super_ni_{instance['id']}",
                    "messages": [
                        {"role": "user", "content": encoded_example["prompt"]},
                        {"role": "assistant", "content": encoded_example["completion"]},
                    ]
                }) + "\n")
            
            
def convert_cot_data(data_dir, output_dir, num_zero_shot_examples=50000, num_few_shot_examples=50000):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    if num_few_shot_examples > 0:
        with open(os.path.join(data_dir, "cot_zsopt.jsonl"), "r") as fin:
            zero_shot_examples = [json.loads(line) for line in fin]
            if num_zero_shot_examples < len(zero_shot_examples):
                zero_shot_examples = random.sample(zero_shot_examples, k=num_zero_shot_examples)
            examples.extend(zero_shot_examples)
    if num_few_shot_examples > 0:
        with open(os.path.join(data_dir, "cot_fsopt.jsonl"), "r") as fin:
            few_shot_examples = [json.loads(line) for line in fin]
            if num_few_shot_examples < len(few_shot_examples):
                few_shot_examples = random.sample(few_shot_examples, k=num_few_shot_examples)
            examples.extend(few_shot_examples)
    output_path = os.path.join(output_dir, "cot_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            prompt = example["inputs"]
            if not prompt.endswith("\n") and not prompt.rstrip().endswith(":"):
                prompt += "\n"
            completion = example["targets"]
            fout.write(json.dumps({
                "dataset": "cot",
                "id": f"cot_{idx}",
                "messages": [
                    {"role": "user", "content": prompt},
                    {"role": "assistant", "content": completion},
                ]
            }) + "\n")
            

def convert_flan_v2_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    with open(os.path.join(data_dir, "flan_v2_resampled_100k.jsonl"), "r") as fin:
        for line in fin:
            examples.append(json.loads(line))
    output_path = os.path.join(output_dir, "flan_v2_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            prompt = example["inputs"]
            if not prompt.endswith("\n") and not prompt.rstrip().endswith(":"):
                prompt += "\n"
            completion = example["targets"]
            fout.write(json.dumps({
                "dataset": "flan_v2",
                "id": f"flan_v2_{idx}",
                "messages": [
                    {"role": "user", "content": prompt},
                    {"role": "assistant", "content": completion},
                ]
            }) + "\n")


def convert_dolly_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    with open(os.path.join(data_dir, "databricks-dolly-15k.jsonl"), "r") as fin:
        for line in fin:
            examples.append(json.loads(line))
    output_path = os.path.join(output_dir, "dolly_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            encoded_example = encode_instruction_example(
                instruction=example["instruction"], 
                input=example["context"], 
                output=example["response"],
                random_template=True,
                eos_token=None
            )
            fout.write(json.dumps({
                "dataset": "dolly",
                "id": f"dolly_{idx}",
                "messages": [
                    {"role": "user", "content": encoded_example["prompt"]},
                    {"role": "assistant", "content": encoded_example["completion"]},
                ]
            }) + "\n")


def convert_self_instruct_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    with open(os.path.join(data_dir, "all_instances_82K.jsonl"), "r") as fin:
        for line in fin:
            examples.append(json.loads(line))
    output_path = os.path.join(output_dir, "self_instruct_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            encoded_example = encode_instruction_example(
                instruction=example["instruction"], 
                input=example["input"], 
                output=example["output"],
                random_template=True,
                eos_token=None
            )
            fout.write(json.dumps({
                "dataset": "self_instruct",
                "id": f"self_instruct_{idx}",
                "messages": [
                    {"role": "user", "content": encoded_example["prompt"]},
                    {"role": "assistant", "content": encoded_example["completion"]},
                ]
            }) + "\n")


def convert_unnatural_instructions_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    instance_cnt = 0
    with open(os.path.join(data_dir, "core_data.jsonl"), "r") as fin, open((os.path.join(output_dir, "unnatural_instructions_data.jsonl")), "w") as fout:
        for line in fin:
            task_data = json.loads(line)
            instruction = task_data["instruction"]
            for instance in task_data["instances"]:
                if instance["constraints"] and instance["constraints"].lower() not in ["none", "none."]:
                    instance_instruction = instruction + "\n" + instance["constraints"]
                else:
                    instance_instruction = instruction
                encoded_example = encode_instruction_example(
                    instruction=instance_instruction,
                    input=instance["input"],
                    output=instance["output"],
                    random_template=True,
                    eos_token=None
                )
                fout.write(json.dumps({
                    "dataset": "unnatural_instructions",
                    "id": f"unnatural_instructions_{instance_cnt}",
                    "messages": [
                        {"role": "user", "content": encoded_example["prompt"]},
                        {"role": "assistant", "content": encoded_example["completion"]},
                    ]
                }) + "\n")
                instance_cnt += 1


def convert_stanford_alpaca_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    with open(os.path.join(data_dir, "alpaca_data.json"), "r") as fin:
        examples.extend(json.load(fin))
    output_path = os.path.join(output_dir, "stanford_alpaca_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            encoded_example = encode_instruction_example(
                instruction=example["instruction"], 
                input=example["input"], 
                output=example["output"],
                random_template=True,
                eos_token=None
            )
            fout.write(json.dumps({
                "dataset": "stanford_alpaca",
                "id": f"stanford_alpaca_{idx}",
                "messages": [
                    {"role": "user", "content": encoded_example["prompt"]},
                    {"role": "assistant", "content": encoded_example["completion"]},
                ]
            }) + "\n")


def convert_code_alpaca_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    with open(os.path.join(data_dir, "code_alpaca_20k.json"), "r") as fin:
        examples.extend(json.load(fin))
    output_path = os.path.join(output_dir, "code_alpaca_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            encoded_example = encode_instruction_example(
                instruction=example["instruction"], 
                input=example["input"], 
                output=example["output"],
                random_template=True,
                eos_token=None
            )
            fout.write(json.dumps({
                "dataset": "code_alpaca",
                "id": f"code_alpaca_{idx}",
                "messages": [
                    {"role": "user", "content": encoded_example["prompt"]},
                    {"role": "assistant", "content": encoded_example["completion"]},
                ]
            }) + "\n")


def convert_gpt4_alpaca_data(data_dir, output_dir, load_en=True, load_zh=False):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    if load_en:
        with open(os.path.join(data_dir, "alpaca_gpt4_data.json"), "r") as fin:
            examples.extend(json.load(fin))
    if load_zh:
        with open(os.path.join(data_dir, "alpaca_gpt4_data_zh.json"), "r") as fin:
            examples.extend(json.load(fin))
    output_path = os.path.join(output_dir, "gpt4_alpaca_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            encoded_example = encode_instruction_example(
                instruction=example["instruction"], 
                input=example["input"], 
                output=example["output"],
                random_template=True,
                eos_token=None
            )
            fout.write(json.dumps({
                "dataset": "gpt4_alpaca",
                "id": f"gpt4_alpaca_{idx}",
                "messages": [
                    {"role": "user", "content": encoded_example["prompt"]},
                    {"role": "assistant", "content": encoded_example["completion"]},
                ]
            }) + "\n")


def convert_sharegpt_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    with open(os.path.join(data_dir, "sharegpt_html_cleaned_and_split.json"), "r") as fin:
        examples.extend(json.load(fin))

    output_path = os.path.join(output_dir, "sharegpt_data.jsonl")
    with open(output_path, "w") as fout:
        invalid_cnt = 0
        for idx, example in enumerate(examples):
            messages = []
            valid = True
            for message in example["conversations"]:
                if message["from"] == "human" or message["from"] == "user":
                    messages.append({
                        "role": "user",
                        "content": message["value"]
                    })
                elif message["from"] == "gpt" or message["from"] == "chatgpt":
                    messages.append({
                        "role": "assistant",
                        "content": message["value"]
                    })
                elif message["from"] == "system":
                    valid = False
                    invalid_cnt += 1
                    break
                elif message["from"] == "bing":
                    valid = False
                    invalid_cnt += 1
                    break
                else:
                    raise ValueError(f"Unknown message sender: {message['from']}")
            if messages and valid:
                fout.write(json.dumps({
                    "dataset": "sharegpt",
                    "id": f"sharegpt_{example['id']}",
                    "messages": messages
                }) + "\n")
        print(f"# of invalid examples in sharegpt data: {invalid_cnt}")


def convert_baize_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    for source in ["alpaca", "medical", "quora", "stackoverflow"]:
        with open(os.path.join(data_dir, f"{source}_chat_data.json"), "r") as fin:
            examples.extend(json.load(fin))

    output_path = os.path.join(output_dir, "baize_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            # split example["input"] by [|Human|] and [|AI|]
            messages = []
            rounds = example["input"].split("[|Human|]")[1:]
            for round in rounds:
                if not round.strip() or "[|AI|]" not in round:
                    continue
                human, assistant = round.split("[|AI|]")
                messages.append({
                    "role": "user",
                    "content": human.strip()
                })
                messages.append({
                    "role": "assistant",
                    "content": assistant.strip()
                })
            fout.write(json.dumps({
                "dataset": "baize",
                "id": f"baize_{idx}",
                "messages": messages
            }) + "\n")


def convert_oasst1_data(data_dir, output_dir):
    '''
    For OASST1, because it's in a tree structure, where every user input might get multiple replies, 
    we have to save every path from the root node to the assistant reply (including both leaf node and intemediate node).
    This results in some of the messages being duplicated among different paths (instances).
    Be careful when using this dataset for training. Ideally, you should only minimize the loss of the last message in each path.
    '''
    os.makedirs(output_dir, exist_ok=True)
    conversations = []
    with open(os.path.join(data_dir, "2023-04-12_oasst_ready.trees.jsonl"), "r") as fin:
        for line in fin:
            conversations.append(json.loads(line))

    output_path = os.path.join(output_dir, "oasst1_data.jsonl")

    # we filter out the sequences that mention the creator information
    filter_strings = [
        "LAION",
        "Open Asssistant",
        "OpenAssistant",               
    ]

    # tranvers the conversation tree, and collect all valid sequences
    def dfs(reply, messages, valid_sequences):
        if any([filter_string in reply["text"] for filter_string in filter_strings]):
            return
        if reply["role"] == "assistant":
            messages.append(
                {"role": "assistant", "content": reply["text"]}
            )
            if not reply["replies"]:  # leaf node
                valid_sequences.append(messages[:])
            else:
                for child in reply["replies"]:
                    dfs(child, messages, valid_sequences)
            messages.pop()
        elif reply["role"] == "prompter":
            messages.append(
                {"role": "user", "content": reply["text"]}
            )
            for child in reply["replies"]:
                dfs(child, messages, valid_sequences)
            messages.pop()
        else:
            raise ValueError(f"Unknown role: {reply['role']}")
        
    with open(output_path, "w") as fout:
        example_cnt = 0
        for _, conversation in enumerate(conversations):
            valid_sequences = []
            dfs(conversation["prompt"], [], valid_sequences)
            for sequence in valid_sequences:
                fout.write(json.dumps({
                    "dataset": "oasst1",
                    "id": f"oasst1_{example_cnt}",
                    "messages": sequence
                }) + "\n")
                example_cnt += 1


def convert_lima_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    with open(os.path.join(data_dir, "train.jsonl"), "r") as fin:
        for line in fin:
            examples.append(json.loads(line))
    output_path = os.path.join(output_dir, "lima_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            messages = []
            if not len(example["conversations"]) % 2 == 0:
                print(f"Waring: example {idx} in LIMA has odd number of messages. Cutting off the last message.")
                example["conversations"] = example["conversations"][:-1]
            
            for i in range(0, len(example["conversations"]), 2):
                messages.append({
                    "role": "user",
                    "content": example["conversations"][i]
                })
                messages.append({
                    "role": "assistant",
                    "content": example["conversations"][i+1]
                })
            fout.write(json.dumps({
                "dataset": "lima",
                "id": f"lima_{idx}",
                "messages": messages,
            }) + "\n")


def convert_wizardlm_data(data_dir, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    examples = []
    with open(os.path.join(data_dir, "WizardLM_evol_instruct_V2_143k.json"), "r") as fin:
        examples = json.load(fin)

    output_path = os.path.join(output_dir, "wizardlm_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            messages = []
            assert len(example["conversations"]) % 2 == 0
            for i in range(0, len(example["conversations"]), 2):
                assert example["conversations"][i]["from"] == "human"
                assert example["conversations"][i+1]["from"] == "gpt"
                messages.append({
                    "role": "user",
                    "content": example["conversations"][i]["value"]
                })
                messages.append({
                    "role": "assistant",
                    "content": example["conversations"][i+1]["value"]
                })
            fout.write(json.dumps({
                "dataset": "wizardlm",
                "id": f"wizardlm_{example['idx']}",
                "messages": messages,
            }) + "\n")


def convert_open_orca_data(data_dir, output_dir, num_gpt4_examples=100000, num_gpt35_examples=0):
    os.makedirs(output_dir, exist_ok=True)
    examples = []

    df = pd.read_parquet(os.path.join(data_dir, "1M-GPT4-Augmented.parquet"))    
    gpt4_examples = [row.to_dict() for _, row in df.iterrows()]
    random.shuffle(gpt4_examples)
    examples.extend(gpt4_examples[:num_gpt4_examples])

    df = pd.read_parquet(os.path.join(data_dir, "3_5M-GPT3_5-Augmented.parquet"))
    gpt35_examples = [row.to_dict() for _, row in df.iterrows()]
    random.shuffle(gpt35_examples)
    examples.extend(gpt35_examples[:num_gpt35_examples])

    output_path = os.path.join(output_dir, "open_orca_data.jsonl")
    with open(output_path, "w") as fout:
        for idx, example in enumerate(examples):
            messages = [
                {"role": "system", "content": example["system_prompt"]},
                {"role": "user", "content": example["question"]},
                {"role": "assistant", "content": example["response"]}
            ]
            fout.write(json.dumps({
                "dataset": "open_orca",
                "id": f"open_orca_{example['id']}",
                "messages": messages,
            }) + "\n")    
        

if __name__ == "__main__":
    arg_parser = argparse.ArgumentParser()
    arg_parser.add_argument("--raw_data_dir", type=str, default="data/downloads")
    arg_parser.add_argument("--output_dir", type=str, default="data/processed")
    arg_parser.add_argument("--seed", type=int, default=42)
    args = arg_parser.parse_args()
    random.seed(args.seed)

    # get the subfolder names in raw_data_dir
    subfolders = [f for f in os.listdir(args.raw_data_dir) if os.path.isdir(os.path.join(args.raw_data_dir, f))]

    # all supported datasets    
    supported_datasets = []
    all_funcs = [func_name for func_name in globals() if callable(globals()[func_name])]
    for func_name in all_funcs:
        if re.match(r"convert_.+_data", func_name):
            supported_datasets.append(func_name[8:-5])

    # check if the subfolder names are supported datasets
    valid_subfolders = []
    for subfolder in subfolders:
        if subfolder not in supported_datasets:
            print(f"Warning: {subfolder} in the raw data folder is not a supported dataset. We will skip it.")
        else:
            valid_subfolders.append(subfolder)
    
    # prepare data for each dataset
    statistics = {}
    for subfolder in valid_subfolders:
        print(f"Processing {subfolder} data...")
        globals()[f"convert_{subfolder}_data"](os.path.join(args.raw_data_dir, subfolder), os.path.join(args.output_dir, subfolder))