Olive_Farm / app.py
sam2ai's picture
Synced repo using 'sync_with_huggingface' Github Action
363527f
raw
history blame
22.6 kB
import streamlit as st
import requests
import justext
import pdfplumber
import docx2txt
import json
import ast
import os
import re
import openai
import json
from custom_prompt_template import InstructionGenerationTemplate, AnswerGenerationTemplate
st.set_page_config(page_title="LLM instruction Generator")
# sidebar content
with st.sidebar:
st.markdown("""
<style>
[data-testid=stImage]{
display: block;
margin-top: -20px;
margin-left: auto;
margin-right: auto;
}
</style>
""", unsafe_allow_html=True)
st.image(image="olive_farm.png", width=100)
st.markdown("""
<style>
.sidebar-text {
text-align: justify;
font-size: 14px;
padding-bottom: 16px;
}
.list {
font-size: 14px !important;
}
</style>
<div class="sidebar-text">
OliveFarm is a cutting-edge web application crafted by the innovative minds at
<a href="https://www.odiagenai.org/" target="_blank">OdiaGenAI.</a>
It's designed to effortlessly generate LLM (Language Model) instruction sets in Indic languages.
Presently, it offers support for Hindi and Odia, with seamless scalability to incorporate
additional languages on the horizon.
</div>
<div class="sidebar-text">
This versatile tool accommodates inputs from a variety of sources, including (URLs, PDF documents, and plain text).
</div>
<div class="sidebar-text">
Additionally, OliveFarm features a collection of pre-existing templates, powered by ChatGPT,
to streamline the process of generating instruction sets. Experience the future of
Indic language instruction with OliveFarm!
</div>
<div>
Please follow the
<a href="https://github.com/OdiaGenAI/Olive_Farm/blob/main/README.md" target="_blank">GitHub README</a>
instructions to generate the instruction set.
</div>
<div class="sidebar-text">
Contributors:
</div>
<ul>
<li class="list">AR Kamaldeen</li>
<li class="list">SK Shahid</li>
<li class="list">Sambit Sekhar</li>
<li class="list">Parul Agarwal</li>
<li class="list">Dr. Shantipriya Parida</li>
</ul>
""", unsafe_allow_html=True)
st.markdown(
"""
<style>
.copyright {
text-align: center;
font-size: 14px;
}
</style>
<div class="copyright">
© 2023 Odia Generative AI
</div>
"""
, unsafe_allow_html=True)
# function for the odia stoplists justext
def odia_stoplist():
odia_stopwords = [
"ଏହି", "ଏକ", "ଏକାଉଣଟ", "ମୁଁ", "ମୋର", "ମୁଁ ନିଜେ", "ଆମେ", "ଆମର", "ଆମର", "ଆମେ ନିଜେ", "ତୁମେ", "ତୁମର", "ତୁମର",
"ନିଜେ", "ନିଜେ", "ସେ", "ତାଙ୍କୁ", "ତାଙ୍କର",
"ନିଜେ", "ସେ", "ତାଙ୍କୁ", "ତାଙ୍କର", "ନିଜେ", "ଏହା", "ଏହାର", "ନିଜେ |", "ସେମାନେ", "ସେଗୁଡିକ", "ସେମାନଙ୍କର",
"ସେମାନଙ୍କର", "ନିଜେ |", "କଣ", "ଯାହା", "କିଏ", "କାହାକୁ",
"ଏହା", "ତାହା", "ଏଗୁଡ଼ିକ", "ସେଗୁଡ଼ିକ", "ମୁଁ", "ହେଉଛି", "ହେଉଛି |", "ଥିଲା", "ଥିଲା |", "ହୁଅ", "ହୋଇସାରିଛି |", "ହେବା",
"ଅଛି", "ଅଛି", "ଥିଲା", "ଅଛି", "କର", "କରେ |",
"କରିଛନ୍ତି", "କରିବା", "ଏବଂ", "କିନ୍ତୁ", "ଯଦି", "କିମ୍ବା", "କାରଣ", "ଯେପରି", "ପର୍ଯ୍ୟନ୍ତ", "ଯେତେବେଳେ", "ର", "ପାଇଁ",
"ସହିତ", "ବିଷୟରେ", "ବିପକ୍ଷରେ", "ମଧ୍ୟରେ", "ଭିତରକୁ", "ମାଧ୍ୟମରେ",
"ସମୟରେ", "ପୂର୍ବରୁ", "ପରେ", "ଉପରେ", "ନିମ୍ନରେ |", "କୁ", "ଠାରୁ", "ଅପ୍", "ତଳକୁ", "ଭିତରେ", "ବାହାରେ", "ଉପରେ", "ବନ୍ଦ",
"ସମାପ୍ତ", "ତଳେ |", "ପୁନର୍ବାର", "ଆଗକୁ",
"ତାପରେ", "ଥରେ |", "ଏଠାରେ", "ସେଠାରେ", "କେବେ", "କେଉଁଠାରେ", "କିପରି", "ସମସ୍ତ", "ଉଭୟ", "ପ୍ରତ୍ୟେକ", "ଅଳ୍ପ", "ଅଧିକ",
"ଅଧିକାଂଶ", "ଅନ୍ୟ", "କେତେକ", "ଏହିପରି",
"ନୁହେଁ |", "କେବଳ", "ନିଜର", "ସମାନ", "ତେଣୁ", "ଅପେକ୍ଷା", "ମଧ୍ୟ", "ବହୁତ", "କରିପାରିବେ |", "ଇଚ୍ଛା", "କେବଳ",
"କରିବା ଉଚିତ", "ବର୍ତ୍ତମାନ"
]
return frozenset(odia_stopwords)
# function to extract data from url using justext
def extract_data_from_url(url, language):
try:
response = requests.get(url)
if response.status_code == 200:
print("inside the response")
response.raise_for_status()
page = response.content
para = ""
if language == "English":
paragraphs = justext.justext(page, justext.get_stoplist("English"))
elif language == "Hindi":
paragraphs = justext.justext(page, justext.get_stoplist("Hindi"), 70, 140, 0.0, 0.02, 0.5, 150, False)
elif language == "Odia":
paragraphs = justext.justext(
page, odia_stoplist(), 70, 140, 0.0, 0.02, 0.5, 150, False
)
for paragraph in paragraphs:
if not paragraph.is_boilerplate:
para = para + "\n" + paragraph.text
# returning the extracted data i.e para as string
if para == "":
st.error("Unable to extract data from the URL")
return None
else:
return para
else:
st.error("Request failed ")
return None
except Exception as err:
st.error(err)
return None
# function to extract data from documents
def extract_data_from_documents(documents):
data = ""
if documents is not None:
for document in documents:
document_details = {
"filename": document.name,
"filetype": document.type,
"filesize": document.size,
}
st.write(document_details)
# Extract content from the txt file
if document.type == "text/plain":
# Read as bytes
data += str(document.read(), "utf-8")
# Extract content from the pdf file
elif document.type == "application/pdf":
# using pdfplumber
try:
with pdfplumber.open(document) as pdf:
all_text = ""
for page in pdf.pages:
text = page.extract_text()
all_text += text + "\n"
data += all_text
except requests.exceptions.RequestException as e:
st.write("None")
# Extract content from the docx file
elif (
document.type
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
data += docx2txt.process(document)
# return extract data
return data
else:
st.error("Error: An error occurred while fetching content.")
# return extract status, and the data extracted
return None
# function for the keyboard
# Check the inputs for language, promptType
def valid_drop_down(language, promptType, noOfQuestions, instructionFormat):
langFlag = False
promptFlag = False
noOfQuestionFlag = False
instructionFormatFlag = False
if language:
langFlag = True
if promptType:
promptFlag = True
if noOfQuestions:
noOfQuestionFlag = True
if instructionFormat:
instructionFormatFlag = True
# checking for the compalsory inputs and return true only if all are set
return langFlag & promptFlag & noOfQuestionFlag & instructionFormatFlag
def main():
# setting up the initial session_states
if "extract_button" not in st.session_state:
st.session_state.extract_button = False
if "submit" not in st.session_state:
st.session_state.submit = False
if "generated" not in st.session_state:
st.session_state.generated = False
if "selected" not in st.session_state:
st.session_state.selected = False
if "answered" not in st.session_state:
st.session_state.answered = False
st.subheader("LLM Instructions")
# form to get the inputs
with st.form(key="form1"):
st.write("#")
# dropdown for language
language = st.selectbox("Select a language", ("", "English", "Hindi", "Odia"))
# dropdown for prompt type
promptType = st.selectbox(
"Select the Prompt type", ("", "Input text", "Url", "Document")
)
# inputs for number
noOfQuestions = st.number_input(
"Number of questions to generate:", min_value=1, max_value=20, value=10
)
# dropdown for language
instructionFormat = st.selectbox(
"Format of instruction:", ("Imperative sentence", "Question")
)
# input text for openAiKey
openAiKey = st.text_input(label="Input the openai key", type="password")
if "openAiKey" in st.session_state:
st.session_state["openAiKey"] = openAiKey
else:
st.session_state["openAiKey"] = openAiKey
st.write("##")
# form submit button and setting up the session_state
if st.form_submit_button():
st.session_state.submit = True
if st.session_state.submit:
# extends the prompt form to extract the data
with st.expander(label="prompt"):
with st.form(key="form2"):
# calling the function inside if to check valid drop down inputs
if valid_drop_down(
language, promptType, noOfQuestions, instructionFormat
):
if promptType == "Input text":
inputText = st.text_area(
label="For Instructions",
placeholder="Please enter your text here",
)
elif promptType == "Url":
url = st.text_input(
label="For URL", placeholder="Please enter your text here"
)
elif promptType == "Document":
documents = st.file_uploader(
label="For Documents ( pdf / txt / docx )",
type=["pdf", "txt", "docx"],
accept_multiple_files=True,
)
# if addInfoCheckbox:
# additionalInfo = st.text_input(
# label="Additional Instructions",
# placeholder="Please enter your text here",
# )
if st.form_submit_button():
st.session_state.extract_button = True
# st.experimental_rerun()
# extracting data
if st.session_state.extract_button:
# extracting data
if promptType == "Input text":
extractedData = inputText
elif promptType == "Url":
extractedURLData = extract_data_from_url(url, language)
if extractedURLData is not None:
extractedData = extractedURLData
st.text_area("Extracted Text:", value=extractedData, height=200)
else:
extractedData = False
elif promptType == "Document":
if not documents:
documents = None
else:
for doc in documents:
if doc.name.split(".")[-1].lower() not in ["pdf", "txt", "docx"]:
# if documents is not the relevant type
st.error("Unsupported file: " + doc.name)
extractedDocumentData = extract_data_from_documents(documents)
extractedData = extractedDocumentData
# if the values are extracted running the custom prompt by creating an instance
if extractedData:
# ----------------------------- RUNNING THE PROMPT -----------------------------
if "extractedData" not in st.session_state:
st.session_state["extractedData"] = extractedData
else:
st.session_state["extractedData"] = extractedData
if "Initial" not in st.session_state:
st.session_state.Initial=True
if st.session_state.Initial == True:
# running the prompt form here
openai.api_key = st.session_state["openAiKey"]
my_prompt_template = InstructionGenerationTemplate()
# providing the rules for the instructions to be generated
additional_rules = """
- You do not need to provide a response to the generated examples.
- You must return the response in the specified language.
- Each generated instruction can be either an imperative sentence or a question.
"""
try :
if st.button("Generate Instructions"):
prompt = my_prompt_template.format(
num_questions=noOfQuestions,
context=extractedData,
instruction_format=instructionFormat,
lang=language,
additional_rules=additional_rules
)
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": prompt},
])
# if st.button("Generate Instructions"):
print("Generate button")
print("Checkpoint 1!")
if "result" not in st.session_state:
content = response.choices[0].message.content
# content = "\n1. helloworld1.\n2. helloworld2"
responses_list = content.split('\n')
responses_list = [re.sub(r'^\s*\d+\.\s*', '', resp) for resp in responses_list if resp]
st.session_state["result"]=responses_list
st.session_state.generated = True
st.session_state.Initial = False
except Exception as err:
st.error(err)
if st.session_state.generated:
# displaying the generated instructions
st.write("Generated Instructions")
result = st.session_state["result"]
# print(type(result))
# print(result)
result_dict = {i+1: value for i,value in enumerate(result)}
selected_items = [f" {value} " for key, value in result_dict.items() if st.checkbox(f"Q{key} : {value}")]
# print(type(result_dict))
# print(result_dict)
print("Checked point 2!")
# Display the selected items as a list
if selected_items:
st.write("Selected Items:")
st.write(selected_items)
if "selected_items" not in st.session_state:
st.session_state["selected_items"] = selected_items
st.session_state["selected_items"] = selected_items
st.session_state.selected = True
else:
st.write("No items selected.")
# ----------------------------- RUNNING THE PROMPT FOR ANSWER GENERATION -----------------------------
if st.session_state.selected:
if "Initial2" not in st.session_state:
st.session_state.Initial2=True
if st.session_state.Initial2:
# running the prompt form here
openai.api_key = st.session_state["openAiKey"]
my_prompt_template2 = AnswerGenerationTemplate()
# providing the rules for the answers to be generated
additional_rules = """
Each generated answer should be within the <ans>Answer</ans> tag and the question should be within the <ques>Question</ques> tag.
"""
question = st.session_state["selected_items"]
try:
if st.button("Generate Answers"):
prompt = my_prompt_template2.format(
questions=question,
additional_rules = additional_rules
)
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": prompt},
])
# if st.button("Generate Answers"):
# print("\n\n\n\nInside Answersss:\n\n\n\n")
# print(st.session_state["selected_items"])
# print("Generate button")
# print("Checkpoint 3!")
if "answers" not in st.session_state:
content = response.choices[0].message.content
# content = "\n1. Answer1.\n2. Answer2"
print("\n\n\n\n\nAnswerss before regex\n\n\n\n")
print(content)
# print("Answer Type:" + str(type(content)))
# responses_list = content.split('\n')
# print("\n\n\n\n\nAnswerss before regex after splitting\n\n\n\n")
# print(responses_list)
# print("Answer Type:" + str(type(responses_list)))
# responses_list = [re.sub(r'^\s*\d+\.\s*', '', resp) for resp in responses_list if resp]
responses_list = re.findall(r'<ans>(.*?)</ans>', content, re.DOTALL)
st.session_state["answers"]=responses_list
st.session_state.answered = True
st.session_state.Initial2 = False
except Exception as e:
st.error(e)
if st.session_state.answered:
# displaying the generated Answers
questions = st.session_state["selected_items"]
answers = st.session_state["answers"]
# print("\n\n\n\n\nAnswerss after regex\n\n\n\n")
# print(answers)
# print("Answer Type:" + str(type(answers)))
answers_dict = {i+1: value for i,value in enumerate(answers)}
# print(type(answers_dict))
# print(answers_dict)
# print("Checked point 4!")
# st.write("answers")
# st.write(answers_dict)
# Create a list to hold the JSON-like data
st.write("Generated Questions and Answers")
# Create a list of dictionaries
jsonl_data = [{"Instruction": question, "Output": answers_dict.get(i, 'No answer found'), "Input":""} for i, question in enumerate(questions, start=1)]
st.write(jsonl_data)
jsonl_string = '\n'.join(json.dumps(item, ensure_ascii=False) for item in jsonl_data)
# Display the JSONL data
print(jsonl_string)
if st.download_button(label="Save as jsonl", data=jsonl_string, mime="application/json"):
st.success("Successfully saved")
if st.button("Clear"):
st.session_state.extract_button = False
st.session_state.submit = False
st.session_state.generated = False
st.session_state.selected = False
st.session_state.answered = False
if "Initial" in st.session_state:
st.session_state.Initial = True
if "Initial2" in st.session_state:
st.session_state.Initial2 = True
if "openAiKey" in st.session_state:
del st.session_state["openAiKey"]
if "extractedData" in st.session_state:
del st.session_state["extractedData"]
if "result" in st.session_state:
del st.session_state["result"]
if "selected_items" in st.session_state:
del st.session_state["selected_items"]
if "answers" in st.session_state:
del st.session_state["answers"]
st.experimental_rerun()
if __name__ == "__main__":
main()