import openai import streamlit as st from camel.agents import RolePlaying from camel.utils import print_text_animated from datetime import datetime def task_generator(user,assistant, openAiKey): openai.api_key = openAiKey prompt = f'''User: Farmer, Assistant: Business analyst Generate a conversation topic: Help the farmer in deciding the optimal choice for crops this year\n User: Accountant, Assistant: Developer Generate a conversation topic: Developing a custom accounting software to automate financial processes and reduce errors.\n User: Athlete, Assistant: Doctor Generate a conversation topic: Developing a personalized nutrition plan to optimize athletic performance and recovery.\n User: Politician, Assistant: Social Media Manager\n Generate a conversation topic: Develop a social media strategy to increase the politician's online presence and engagement with constituents.\n User: {user}, Assistant: {assistant} Generate a conversation topic:''' response = openai.Completion.create( engine="text-davinci-002", #Use gpt-3 engine. prompt=prompt, max_tokens=50, n=1 ) task = response.choices[0].text.strip() return task def conversation_generator(user,assistant, task, chat_limit=2): task_prompt = task print(task) print(user) print(assistant) print(chat_limit) role_play_session = RolePlaying(assistant, user, task_prompt) # print(Fore.CYAN + f"Specified task prompt:\n{role_play_session.task_prompt}\n") # print(f"Specified task prompt:\n{role_play_session.task_prompt}\n") chat_turn_limit, n = chat_limit, 0 assistant_msg, _ = role_play_session.init_chat() user_chat = [] assistant_chat = [] now = datetime.now() current_time = now.strftime("%H:%M:%S") print("Current Time =", current_time) while n < chat_turn_limit: n += 1 try: (assistant_msg, _, _), (user_msg, _, _) = role_play_session.step(assistant_msg) assert user_msg.content is not None with st.chat_message("user"): user_content = user_msg.content.replace("Instruction: ", "").replace("Input: None", "") st.text(user_content) assert assistant_msg.content is not None with st.chat_message("assistant"): assistant_content = assistant_msg.content.replace("Solution: ", "").replace("Next request.","") st.text(assistant_content) except: break # print(Fore.BLUE + f"AI User:\n\n{user_msg.content}\n\n") # print(f"AI User:\n\n{user_msg.content}\n\n") user_chat.append(user_msg.content) if "Next request." not in assistant_msg.content: break # print(Fore.GREEN + f"AI Assistant:\n\n{assistant_msg.content}\n\n") # print(f"AI Assistant:\n\n{assistant_msg.content}\n\n") assistant_chat.append(assistant_msg.content) if "" in user_msg.content: break #Processing the generated conversation final_user_convo = [] final_assistant_convo = [] if len(assistant_chat)==0 or len(user_chat)==0: return "Empty list" for i in range(len(user_chat)): if ("Next request" in assistant_chat[i]) and ("Instruction:" in user_chat[i]) and ("Input:" in user_chat[i]): final_instruction = "" try: instruction = user_chat[i].split("Instruction:")[1].split("Input:")[0] input = user_chat[i].split("Input:")[1].strip() except: continue if input.strip() == 'None': final_instruction = final_instruction+instruction.replace("\n"," ") final_instruction = final_instruction.strip() else: final_instruction = instruction.replace("\n"," ")+"\ninput:"+input #If an input is there, then add a newline after instruction, input: and then the input. final_instruction = final_instruction.strip() final_user_convo.append(final_instruction) final_assistant_convo.append(assistant_chat[i].replace("Solution:","").replace("Next request.","").strip()) else: break #Sometimes faulty chat gets generated. A proper convo has Next request at the end assert (len(final_user_convo)-len(assistant_chat))<=1 # print('\n\n'+'End of the conversation\n\n') # print("*"*150, end='\n') final_convo_list = [] for i in range(len(final_user_convo)): user_convo = {"from":"user","value":final_user_convo[i]} assistant_convo = {"from":"assistant","value":final_assistant_convo[i]} final_convo_list.append(user_convo) final_convo_list.append(assistant_convo) length = len(final_convo_list) final_json_entry = {'user':user,'assistant':assistant,'task':task_prompt,'conversations':final_convo_list, 'specified_task':role_play_session.task_prompt, 'length':length} # pprint.pprint(final_json_entry) return final_json_entry, final_user_convo, final_assistant_convo