Spaces:
Running
Running
File size: 7,934 Bytes
6de3e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import argparse
import functools
import os
import platform
import torch
from peft import LoraConfig, get_peft_model, AdaLoraConfig, PeftModel, prepare_model_for_kbit_training
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, WhisperForConditionalGeneration, WhisperProcessor
from utils.callback import SavePeftModelCallback
from utils.data_utils import DataCollatorSpeechSeq2SeqWithPadding
from utils.model_utils import load_from_checkpoint
from utils.reader import CustomDataset
from utils.utils import print_arguments, make_inputs_require_grad, add_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("train_data", type=str, default="dataset/train.json", help="")
add_arg("test_data", type=str, default="dataset/test.json", help="")
add_arg("base_model", type=str, default="openai/whisper-tiny", help="Whisper")
add_arg("output_dir", type=str, default="output/", help="")
add_arg("warmup_steps", type=int, default=50, help="")
add_arg("logging_steps", type=int, default=100, help="")
add_arg("eval_steps", type=int, default=1000, help="")
add_arg("save_steps", type=int, default=1000, help="")
add_arg("num_workers", type=int, default=8, help="")
add_arg("learning_rate", type=float, default=1e-3, help="")
add_arg("min_audio_len", type=float, default=0.5, help="")
add_arg("max_audio_len", type=float, default=30, help="")
add_arg("use_adalora", type=bool, default=True, help="AdaLora/Lora")
add_arg("fp16", type=bool, default=True, help="fp16")
add_arg("use_8bit", type=bool, default=False, help="8 bit")
add_arg("timestamps", type=bool, default=False, help="")
add_arg("local_files_only", type=bool, default=False, help="")
add_arg("num_train_epochs", type=int, default=3, help="")
add_arg("language", type=str, default="bn", help="")
add_arg("task", type=str, default="transcribe", choices=['transcribe', 'translate'], help="模型的任务")
add_arg("augment_config_path", type=str, default=None, help="")
add_arg("resume_from_checkpoint", type=str, default=None, help="")
add_arg("per_device_train_batch_size", type=int, default=8, help="batch size")
add_arg("per_device_eval_batch_size", type=int, default=8, help="batch size")
add_arg("gradient_accumulation_steps", type=int, default=1, help="")
args = parser.parse_args()
print_arguments(args)
# Whisper tokenizer
processor = WhisperProcessor.from_pretrained(args.base_model,
language=args.language,
task=args.task,
no_timestamps=not args.timestamps,
local_files_only=args.local_files_only)
#
train_dataset = CustomDataset(data_list_path=args.train_data,
processor=processor,
language=args.language,
timestamps=args.timestamps,
min_duration=args.min_audio_len,
max_duration=args.max_audio_len,
augment_config_path=args.augment_config_path)
test_dataset = CustomDataset(data_list_path=args.test_data,
processor=processor,
language=args.language,
timestamps=args.timestamps,
min_duration=args.min_audio_len,
max_duration=args.max_audio_len)
print(f"len train - {len(train_dataset)} test len - {len(test_dataset)}")
# padding
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)
# Whisper
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
#
model = WhisperForConditionalGeneration.from_pretrained(args.base_model,
load_in_8bit=args.use_8bit,
device_map=device_map,
local_files_only=args.local_files_only)
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
#
model = prepare_model_for_kbit_training(model)
# forward,req grad
model.model.encoder.conv1.register_forward_hook(make_inputs_require_grad)
print('加载LoRA模块...')
if args.resume_from_checkpoint:
#
print("Loading adapters from checkpoint.")
model = PeftModel.from_pretrained(model, args.resume_from_checkpoint, is_trainable=True)
else:
print(f'adding LoRA modules...')
target_modules = ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"]
print(target_modules)
if args.use_adalora:
config = AdaLoraConfig(init_r=12, target_r=4, beta1=0.85, beta2=0.85, tinit=200, tfinal=1000, deltaT=10,
lora_alpha=32, lora_dropout=0.1, orth_reg_weight=0.5, target_modules=target_modules)
else:
config = LoraConfig(r=32, lora_alpha=64, target_modules=target_modules, lora_dropout=0.05, bias="none")
model = get_peft_model(model, config)
output_dir = os.path.join(args.output_dir, os.path.basename(args.base_model))
#
training_args = \
Seq2SeqTrainingArguments(output_dir=output_dir, # Directory to save checkpoints
per_device_train_batch_size=args.per_device_train_batch_size, # Training batch_size size
per_device_eval_batch_size=args.per_device_eval_batch_size, # Eval batch_size
gradient_accumulation_steps=args.gradient_accumulation_steps, # Cumulative steps of training gradient
learning_rate=args.learning_rate, # learning rate size
warmup_steps=args.warmup_steps, # Warm-up steps
num_train_epochs=args.num_train_epochs, # epochs
save_strategy="steps", #
evaluation_strategy="steps", #
load_best_model_at_end=True, #
fp16=args.fp16, #
report_to=["tensorboard"], # tensorboard
save_steps=args.save_steps, #
eval_steps=args.eval_steps, #
save_total_limit=5, #
optim='adamw_torch', #
ddp_find_unused_parameters=False if ddp else None, #
dataloader_num_workers=args.num_workers, #
logging_steps=args.logging_steps, #
remove_unused_columns=False, #
label_names=["labels"]) #
if training_args.local_rank == 0 or training_args.local_rank == -1:
print('=' * 90)
model.print_trainable_parameters()
print('=' * 90)
# Pytorch2.0
if torch.__version__ >= "2" and platform.system().lower() == 'windows':
model = torch.compile(model)
#
trainer = Seq2SeqTrainer(args=training_args,
model=model,
train_dataset=train_dataset,
eval_dataset=test_dataset,
data_collator=data_collator,
tokenizer=processor.feature_extractor,
callbacks=[SavePeftModelCallback])
model.config.use_cache = False
trainer._load_from_checkpoint = load_from_checkpoint
#
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
#
trainer.save_state()
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.save_pretrained(os.path.join(output_dir, "checkpoint-final"))
|