File size: 7,934 Bytes
6de3e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import functools
import os
import platform

import torch
from peft import LoraConfig, get_peft_model, AdaLoraConfig, PeftModel, prepare_model_for_kbit_training
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, WhisperForConditionalGeneration, WhisperProcessor

from utils.callback import SavePeftModelCallback
from utils.data_utils import DataCollatorSpeechSeq2SeqWithPadding
from utils.model_utils import load_from_checkpoint
from utils.reader import CustomDataset
from utils.utils import print_arguments, make_inputs_require_grad, add_arguments

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("train_data",    type=str, default="dataset/train.json",       help="")
add_arg("test_data",     type=str, default="dataset/test.json",        help="")
add_arg("base_model",    type=str, default="openai/whisper-tiny",      help="Whisper")
add_arg("output_dir",    type=str, default="output/",                  help="")
add_arg("warmup_steps",  type=int, default=50,      help="")
add_arg("logging_steps", type=int, default=100,     help="")
add_arg("eval_steps",    type=int, default=1000,    help="")
add_arg("save_steps",    type=int, default=1000,    help="")
add_arg("num_workers",   type=int, default=8,       help="")
add_arg("learning_rate", type=float, default=1e-3,  help="")
add_arg("min_audio_len", type=float, default=0.5,   help="")
add_arg("max_audio_len", type=float, default=30,    help="")
add_arg("use_adalora",   type=bool,  default=True,  help="AdaLora/Lora")
add_arg("fp16",          type=bool,  default=True,  help="fp16")
add_arg("use_8bit",      type=bool,  default=False, help="8 bit")
add_arg("timestamps",    type=bool,  default=False, help="")
add_arg("local_files_only", type=bool, default=False, help="")
add_arg("num_train_epochs", type=int, default=3,      help="")
add_arg("language",      type=str, default="bn", help="")
add_arg("task",     type=str, default="transcribe", choices=['transcribe', 'translate'], help="模型的任务")
add_arg("augment_config_path",         type=str, default=None, help="")
add_arg("resume_from_checkpoint",      type=str, default=None, help="")
add_arg("per_device_train_batch_size", type=int, default=8,    help="batch size")
add_arg("per_device_eval_batch_size",  type=int, default=8,    help="batch size")
add_arg("gradient_accumulation_steps", type=int, default=1,    help="")

args = parser.parse_args()
print_arguments(args)


# Whisper tokenizer
processor = WhisperProcessor.from_pretrained(args.base_model,
                                             language=args.language,
                                             task=args.task,
                                             no_timestamps=not args.timestamps,
                                             local_files_only=args.local_files_only)

# 
train_dataset = CustomDataset(data_list_path=args.train_data,
                              processor=processor,
                              language=args.language,
                              timestamps=args.timestamps,
                              min_duration=args.min_audio_len,
                              max_duration=args.max_audio_len,
                              augment_config_path=args.augment_config_path)
test_dataset = CustomDataset(data_list_path=args.test_data,
                             processor=processor,
                             language=args.language,
                             timestamps=args.timestamps,
                             min_duration=args.min_audio_len,
                             max_duration=args.max_audio_len)
print(f"len train - {len(train_dataset)} test len - {len(test_dataset)}")

# padding
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)

# Whisper
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
    device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}

# 
model = WhisperForConditionalGeneration.from_pretrained(args.base_model,
                                                        load_in_8bit=args.use_8bit,
                                                        device_map=device_map,
                                                        local_files_only=args.local_files_only)
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
# 
model = prepare_model_for_kbit_training(model)
# forward,req grad
model.model.encoder.conv1.register_forward_hook(make_inputs_require_grad)

print('加载LoRA模块...')
if args.resume_from_checkpoint:
    # 
    print("Loading adapters from checkpoint.")
    model = PeftModel.from_pretrained(model, args.resume_from_checkpoint, is_trainable=True)
else:
    print(f'adding LoRA modules...')
    target_modules = ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"]
    print(target_modules)
    if args.use_adalora:
        config = AdaLoraConfig(init_r=12, target_r=4, beta1=0.85, beta2=0.85, tinit=200, tfinal=1000, deltaT=10,
                               lora_alpha=32, lora_dropout=0.1, orth_reg_weight=0.5, target_modules=target_modules)
    else:
        config = LoraConfig(r=32, lora_alpha=64, target_modules=target_modules, lora_dropout=0.05, bias="none")
    model = get_peft_model(model, config)

output_dir = os.path.join(args.output_dir, os.path.basename(args.base_model))
# 
training_args = \
    Seq2SeqTrainingArguments(output_dir=output_dir,  # Directory to save checkpoints
                             per_device_train_batch_size=args.per_device_train_batch_size,  # Training batch_size size
                             per_device_eval_batch_size=args.per_device_eval_batch_size,  # Eval batch_size 
                             gradient_accumulation_steps=args.gradient_accumulation_steps,  # Cumulative steps of training gradient
                             learning_rate=args.learning_rate,  # learning rate size
                             warmup_steps=args.warmup_steps,  # Warm-up steps
                             num_train_epochs=args.num_train_epochs,  # epochs
                             save_strategy="steps",  # 
                             evaluation_strategy="steps",  # 
                             load_best_model_at_end=True,  # 
                             fp16=args.fp16,  # 
                             report_to=["tensorboard"],  # tensorboard
                             save_steps=args.save_steps,  # 
                             eval_steps=args.eval_steps,  # 
                             save_total_limit=5,  # 
                             optim='adamw_torch',  # 
                             ddp_find_unused_parameters=False if ddp else None,  # 
                             dataloader_num_workers=args.num_workers,  # 
                             logging_steps=args.logging_steps,  # 
                             remove_unused_columns=False,  # 
                             label_names=["labels"])  # 

if training_args.local_rank == 0 or training_args.local_rank == -1:
    print('=' * 90)
    model.print_trainable_parameters()
    print('=' * 90)

# Pytorch2.0
if torch.__version__ >= "2" and platform.system().lower() == 'windows':
    model = torch.compile(model)

# 
trainer = Seq2SeqTrainer(args=training_args,
                         model=model,
                         train_dataset=train_dataset,
                         eval_dataset=test_dataset,
                         data_collator=data_collator,
                         tokenizer=processor.feature_extractor,
                         callbacks=[SavePeftModelCallback])
model.config.use_cache = False
trainer._load_from_checkpoint = load_from_checkpoint

# 
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)

# 
trainer.save_state()
if training_args.local_rank == 0 or training_args.local_rank == -1:
    model.save_pretrained(os.path.join(output_dir, "checkpoint-final"))