File size: 4,285 Bytes
cc4257f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
import albumentations as A
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from albumentations.pytorch import ToTensorV2
from efficientnet_pytorch import EfficientNet
from PIL import Image
from sklearn import metrics
from torch import nn, optim
from torch.utils.data import DataLoader, Dataset
from torchvision import models
from tqdm import tqdm
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Dataset(Dataset):
def __init__(self, root_images, root_file, transform=None):
self.root_images = root_images
self.root_file = root_file
self.transform = transform
self.file = pd.read_csv(root_file)
def __len__(self):
return self.file.shape[0]
def __getitem__(self, index):
img_path = os.path.join(self.root_images, self.file["id"][index])
image = np.array(Image.open(img_path).convert("RGB"))
if self.transform is not None:
augmentations = self.transform(image=image)
image = augmentations["image"]
return image
learning_rate = 0.0001
batch_size = 32
epochs = 10
height = 224
width = 224
IMG = "AI images or Not/test"
FILE = "Data/sample_submission.csv"
def get_loader(image, file, batch_size, test_transform):
test_ds = Dataset(image, file, test_transform)
test_loader = DataLoader(test_ds, batch_size=batch_size, shuffle=False)
return test_loader
normalize = A.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.255], max_pixel_value=255.0
)
test_transform = A.Compose(
[A.Resize(width=width, height=height), normalize, ToTensorV2()]
)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.model = EfficientNet.from_pretrained("efficientnet-b4")
self.fct = nn.Linear(1000, 1)
def forward(self, img):
x = self.model(img)
# print(x.shape)
x = self.fct(x)
return x
def load_checkpoint(checkpoint, model, optimizer):
print("====> Loading...")
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
# test = pd.read_csv(FILE)
# test
model = Net().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
checkpoint_file = "Checkpoint/baseline_V0.pth.tar"
test_loader = get_loader(IMG, FILE, batch_size, test_transform)
checkpoint = torch.load(checkpoint_file, map_location=torch.device("cpu"))
load_checkpoint(checkpoint, model, optimizer)
model.eval()
# define the predict function
def predict(image):
# preprocess the image
image = np.array(image)
image = test_transform(image=image)["image"]
image = image.unsqueeze(0).to(device)
# get the model prediction
with torch.no_grad():
output = model(image)
pred = torch.sigmoid(output).cpu().numpy().squeeze()
# check if prediction is AI generated, not AI generated, or uncertain
if pred >= 0.6:
prediction = "AI generated"
confidence = pred
elif pred <= 0.4:
prediction = "NOT AI generated"
confidence = 1 - pred
else:
prediction = "uncertain"
confidence = abs(0.5 - pred) * 2
# return the prediction and confidence as a string
return f"This image is {prediction} with {confidence:.2%} confidence."
# define the input interface with examples
inputs = gr.inputs.Image(shape=(224, 224))
outputs = gr.outputs.Textbox()
examples = [
["Data/train/3.jpg"],
["Data/train/10.jpg"],
["Data/train/14.jpg"],
["Data/train/4515.jpg"],
["Data/train/4518.jpg"],
["Data/train/6122.jpg"],
["Data/train/6123.jpg"],
["Data/train/6124.jpg"],
["Data/train/6125.jpg"],
["Data/train/7461.jpg"],
["Data/train/7462.jpg"],
["Data/train/7463.jpg"],
["Data/train/7464.jpg"],
["Data/train/7465.jpg"],
["Data/train/8546.jpg"],
["Data/train/8543.jpg"],
["Data/train/9120.jpg"],
["Data/train/10120.jpg"],
]
iface = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title="AI image detector π",
description="Check if an image is AI generated or real.",
examples=examples,
)
# launch the gradio app
iface.launch()
|