Initial commit
Browse files- .gitignore +4 -0
- app.py +141 -0
- requirements.txt +2 -0
- utils.py +54 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import StringIO
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from utils import write_vtt
|
5 |
+
import whisper
|
6 |
+
|
7 |
+
#import os
|
8 |
+
#os.system("pip install git+https://github.com/openai/whisper.git")
|
9 |
+
|
10 |
+
LANGUAGES = [
|
11 |
+
"English",
|
12 |
+
"Chinese",
|
13 |
+
"German",
|
14 |
+
"Spanish",
|
15 |
+
"Russian",
|
16 |
+
"Korean",
|
17 |
+
"French",
|
18 |
+
"Japanese",
|
19 |
+
"Portuguese",
|
20 |
+
"Turkish",
|
21 |
+
"Polish",
|
22 |
+
"Catalan",
|
23 |
+
"Dutch",
|
24 |
+
"Arabic",
|
25 |
+
"Swedish",
|
26 |
+
"Italian",
|
27 |
+
"Indonesian",
|
28 |
+
"Hindi",
|
29 |
+
"Finnish",
|
30 |
+
"Vietnamese",
|
31 |
+
"Hebrew",
|
32 |
+
"Ukrainian",
|
33 |
+
"Greek",
|
34 |
+
"Malay",
|
35 |
+
"Czech",
|
36 |
+
"Romanian",
|
37 |
+
"Danish",
|
38 |
+
"Hungarian",
|
39 |
+
"Tamil",
|
40 |
+
"Norwegian",
|
41 |
+
"Thai",
|
42 |
+
"Urdu",
|
43 |
+
"Croatian",
|
44 |
+
"Bulgarian",
|
45 |
+
"Lithuanian",
|
46 |
+
"Latin",
|
47 |
+
"Maori",
|
48 |
+
"Malayalam",
|
49 |
+
"Welsh",
|
50 |
+
"Slovak",
|
51 |
+
"Telugu",
|
52 |
+
"Persian",
|
53 |
+
"Latvian",
|
54 |
+
"Bengali",
|
55 |
+
"Serbian",
|
56 |
+
"Azerbaijani",
|
57 |
+
"Slovenian",
|
58 |
+
"Kannada",
|
59 |
+
"Estonian",
|
60 |
+
"Macedonian",
|
61 |
+
"Breton",
|
62 |
+
"Basque",
|
63 |
+
"Icelandic",
|
64 |
+
"Armenian",
|
65 |
+
"Nepali",
|
66 |
+
"Mongolian",
|
67 |
+
"Bosnian",
|
68 |
+
"Kazakh",
|
69 |
+
"Albanian",
|
70 |
+
"Swahili",
|
71 |
+
"Galician",
|
72 |
+
"Marathi",
|
73 |
+
"Punjabi",
|
74 |
+
"Sinhala",
|
75 |
+
"Khmer",
|
76 |
+
"Shona",
|
77 |
+
"Yoruba",
|
78 |
+
"Somali",
|
79 |
+
"Afrikaans",
|
80 |
+
"Occitan",
|
81 |
+
"Georgian",
|
82 |
+
"Belarusian",
|
83 |
+
"Tajik",
|
84 |
+
"Sindhi",
|
85 |
+
"Gujarati",
|
86 |
+
"Amharic",
|
87 |
+
"Yiddish",
|
88 |
+
"Lao",
|
89 |
+
"Uzbek",
|
90 |
+
"Faroese",
|
91 |
+
"Haitian Creole",
|
92 |
+
"Pashto",
|
93 |
+
"Turkmen",
|
94 |
+
"Nynorsk",
|
95 |
+
"Maltese",
|
96 |
+
"Sanskrit",
|
97 |
+
"Luxembourgish",
|
98 |
+
"Myanmar",
|
99 |
+
"Tibetan",
|
100 |
+
"Tagalog",
|
101 |
+
"Malagasy",
|
102 |
+
"Assamese",
|
103 |
+
"Tatar",
|
104 |
+
"Hawaiian",
|
105 |
+
"Lingala",
|
106 |
+
"Hausa",
|
107 |
+
"Bashkir",
|
108 |
+
"Javanese",
|
109 |
+
"Sundanese"
|
110 |
+
]
|
111 |
+
|
112 |
+
model_cache = dict()
|
113 |
+
|
114 |
+
def greet(modelName, languageName, uploadFile, microphoneData, task):
|
115 |
+
source = uploadFile if uploadFile is not None else microphoneData
|
116 |
+
selectedLanguage = languageName.lower() if len(languageName) > 0 else None
|
117 |
+
selectedModel = modelName if modelName is not None else "base"
|
118 |
+
|
119 |
+
model = model_cache.get(selectedModel, None)
|
120 |
+
|
121 |
+
if not model:
|
122 |
+
model = whisper.load_model(selectedModel)
|
123 |
+
model_cache[selectedModel] = model
|
124 |
+
|
125 |
+
result = model.transcribe(source, language=selectedLanguage, task=task)
|
126 |
+
|
127 |
+
segmentStream = StringIO()
|
128 |
+
write_vtt(result["segments"], file=segmentStream)
|
129 |
+
segmentStream.seek(0)
|
130 |
+
|
131 |
+
return result["text"], segmentStream.read()
|
132 |
+
|
133 |
+
demo = gr.Interface(fn=greet, description="Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification.", inputs=[
|
134 |
+
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"),
|
135 |
+
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
|
136 |
+
gr.Audio(source="upload", type="filepath", label="Upload Audio"),
|
137 |
+
gr.Audio(source="microphone", type="filepath", label="Microphone Input"),
|
138 |
+
gr.Dropdown(choices=["transcribe", "translate"], label="Task"),
|
139 |
+
], outputs=[gr.Text(label="Transcription"), gr.Text(label="Segments")])
|
140 |
+
|
141 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
git+https://github.com/openai/whisper.git
|
2 |
+
transformers
|
utils.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import zlib
|
2 |
+
from typing import Iterator, TextIO
|
3 |
+
|
4 |
+
|
5 |
+
def exact_div(x, y):
|
6 |
+
assert x % y == 0
|
7 |
+
return x // y
|
8 |
+
|
9 |
+
|
10 |
+
def str2bool(string):
|
11 |
+
str2val = {"True": True, "False": False}
|
12 |
+
if string in str2val:
|
13 |
+
return str2val[string]
|
14 |
+
else:
|
15 |
+
raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
|
16 |
+
|
17 |
+
|
18 |
+
def optional_int(string):
|
19 |
+
return None if string == "None" else int(string)
|
20 |
+
|
21 |
+
|
22 |
+
def optional_float(string):
|
23 |
+
return None if string == "None" else float(string)
|
24 |
+
|
25 |
+
|
26 |
+
def compression_ratio(text) -> float:
|
27 |
+
return len(text) / len(zlib.compress(text.encode("utf-8")))
|
28 |
+
|
29 |
+
|
30 |
+
def format_timestamp(seconds: float):
|
31 |
+
assert seconds >= 0, "non-negative timestamp expected"
|
32 |
+
milliseconds = round(seconds * 1000.0)
|
33 |
+
|
34 |
+
hours = milliseconds // 3_600_000
|
35 |
+
milliseconds -= hours * 3_600_000
|
36 |
+
|
37 |
+
minutes = milliseconds // 60_000
|
38 |
+
milliseconds -= minutes * 60_000
|
39 |
+
|
40 |
+
seconds = milliseconds // 1_000
|
41 |
+
milliseconds -= seconds * 1_000
|
42 |
+
|
43 |
+
return (f"{hours}:" if hours > 0 else "") + f"{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
44 |
+
|
45 |
+
|
46 |
+
def write_vtt(transcript: Iterator[dict], file: TextIO):
|
47 |
+
print("WEBVTT\n", file=file)
|
48 |
+
for segment in transcript:
|
49 |
+
print(
|
50 |
+
f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
|
51 |
+
f"{segment['text'].replace('-->', '->')}\n",
|
52 |
+
file=file,
|
53 |
+
flush=True,
|
54 |
+
)
|